1
0
Fork 0
mirror of https://github.com/Luzifer/staticmap.git synced 2024-10-19 08:04:22 +00:00
staticmap/vendor/github.com/golang/geo/s2/point.go
Knut Ahlers 1abd72dfdc
Update dependencies
Signed-off-by: Knut Ahlers <knut@ahlers.me>
2018-04-03 21:14:16 +02:00

443 lines
17 KiB
Go

// Copyright 2014 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"fmt"
"io"
"math"
"sort"
"github.com/golang/geo/r3"
"github.com/golang/geo/s1"
)
// Point represents a point on the unit sphere as a normalized 3D vector.
// Fields should be treated as read-only. Use one of the factory methods for creation.
type Point struct {
r3.Vector
}
// sortPoints sorts the slice of Points in place.
func sortPoints(e []Point) {
sort.Sort(points(e))
}
// points implements the Sort interface for slices of Point.
type points []Point
func (p points) Len() int { return len(p) }
func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] }
func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 }
// PointFromCoords creates a new normalized point from coordinates.
//
// This always returns a valid point. If the given coordinates can not be normalized
// the origin point will be returned.
//
// This behavior is different from the C++ construction of a S2Point from coordinates
// (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize.
func PointFromCoords(x, y, z float64) Point {
if x == 0 && y == 0 && z == 0 {
return OriginPoint()
}
return Point{r3.Vector{x, y, z}.Normalize()}
}
// OriginPoint returns a unique "origin" on the sphere for operations that need a fixed
// reference point. In particular, this is the "point at infinity" used for
// point-in-polygon testing (by counting the number of edge crossings).
//
// It should *not* be a point that is commonly used in edge tests in order
// to avoid triggering code to handle degenerate cases (this rules out the
// north and south poles). It should also not be on the boundary of any
// low-level S2Cell for the same reason.
func OriginPoint() Point {
return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}}
}
// PointCross returns a Point that is orthogonal to both p and op. This is similar to
// p.Cross(op) (the true cross product) except that it does a better job of
// ensuring orthogonality when the Point is nearly parallel to op, it returns
// a non-zero result even when p == op or p == -op and the result is a Point.
//
// It satisfies the following properties (f == PointCross):
//
// (1) f(p, op) != 0 for all p, op
// (2) f(op,p) == -f(p,op) unless p == op or p == -op
// (3) f(-p,op) == -f(p,op) unless p == op or p == -op
// (4) f(p,-op) == -f(p,op) unless p == op or p == -op
func (p Point) PointCross(op Point) Point {
// NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd",
// but PointCross more accurately describes how this method is used.
x := p.Add(op.Vector).Cross(op.Sub(p.Vector))
// Compare exactly to the 0 vector.
if x == (r3.Vector{}) {
// The only result that makes sense mathematically is to return zero, but
// we find it more convenient to return an arbitrary orthogonal vector.
return Point{p.Ortho()}
}
return Point{x}
}
// OrderedCCW returns true if the edges OA, OB, and OC are encountered in that
// order while sweeping CCW around the point O.
//
// You can think of this as testing whether A <= B <= C with respect to the
// CCW ordering around O that starts at A, or equivalently, whether B is
// contained in the range of angles (inclusive) that starts at A and extends
// CCW to C. Properties:
//
// (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b
// (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c
// (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c
// (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true
// (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false
func OrderedCCW(a, b, c, o Point) bool {
sum := 0
if RobustSign(b, o, a) != Clockwise {
sum++
}
if RobustSign(c, o, b) != Clockwise {
sum++
}
if RobustSign(a, o, c) == CounterClockwise {
sum++
}
return sum >= 2
}
// Distance returns the angle between two points.
func (p Point) Distance(b Point) s1.Angle {
return p.Vector.Angle(b.Vector)
}
// ApproxEqual reports whether the two points are similar enough to be equal.
func (p Point) ApproxEqual(other Point) bool {
return p.Vector.Angle(other.Vector) <= s1.Angle(epsilon)
}
// PointArea returns the area on the unit sphere for the triangle defined by the
// given points.
//
// This method is based on l'Huilier's theorem,
//
// tan(E/4) = sqrt(tan(s/2) tan((s-a)/2) tan((s-b)/2) tan((s-c)/2))
//
// where E is the spherical excess of the triangle (i.e. its area),
// a, b, c are the side lengths, and
// s is the semiperimeter (a + b + c) / 2.
//
// The only significant source of error using l'Huilier's method is the
// cancellation error of the terms (s-a), (s-b), (s-c). This leads to a
// *relative* error of about 1e-16 * s / min(s-a, s-b, s-c). This compares
// to a relative error of about 1e-15 / E using Girard's formula, where E is
// the true area of the triangle. Girard's formula can be even worse than
// this for very small triangles, e.g. a triangle with a true area of 1e-30
// might evaluate to 1e-5.
//
// So, we prefer l'Huilier's formula unless dmin < s * (0.1 * E), where
// dmin = min(s-a, s-b, s-c). This basically includes all triangles
// except for extremely long and skinny ones.
//
// Since we don't know E, we would like a conservative upper bound on
// the triangle area in terms of s and dmin. It's possible to show that
// E <= k1 * s * sqrt(s * dmin), where k1 = 2*sqrt(3)/Pi (about 1).
// Using this, it's easy to show that we should always use l'Huilier's
// method if dmin >= k2 * s^5, where k2 is about 1e-2. Furthermore,
// if dmin < k2 * s^5, the triangle area is at most k3 * s^4, where
// k3 is about 0.1. Since the best case error using Girard's formula
// is about 1e-15, this means that we shouldn't even consider it unless
// s >= 3e-4 or so.
func PointArea(a, b, c Point) float64 {
sa := float64(b.Angle(c.Vector))
sb := float64(c.Angle(a.Vector))
sc := float64(a.Angle(b.Vector))
s := 0.5 * (sa + sb + sc)
if s >= 3e-4 {
// Consider whether Girard's formula might be more accurate.
dmin := s - math.Max(sa, math.Max(sb, sc))
if dmin < 1e-2*s*s*s*s*s {
// This triangle is skinny enough to use Girard's formula.
area := GirardArea(a, b, c)
if dmin < s*0.1*area {
return area
}
}
}
// Use l'Huilier's formula.
return 4 * math.Atan(math.Sqrt(math.Max(0.0, math.Tan(0.5*s)*math.Tan(0.5*(s-sa))*
math.Tan(0.5*(s-sb))*math.Tan(0.5*(s-sc)))))
}
// GirardArea returns the area of the triangle computed using Girard's formula.
// All points should be unit length, and no two points should be antipodal.
//
// This method is about twice as fast as PointArea() but has poor relative
// accuracy for small triangles. The maximum error is about 5e-15 (about
// 0.25 square meters on the Earth's surface) and the average error is about
// 1e-15. These bounds apply to triangles of any size, even as the maximum
// edge length of the triangle approaches 180 degrees. But note that for
// such triangles, tiny perturbations of the input points can change the
// true mathematical area dramatically.
func GirardArea(a, b, c Point) float64 {
// This is equivalent to the usual Girard's formula but is slightly more
// accurate, faster to compute, and handles a == b == c without a special
// case. PointCross is necessary to get good accuracy when two of
// the input points are very close together.
ab := a.PointCross(b)
bc := b.PointCross(c)
ac := a.PointCross(c)
area := float64(ab.Angle(ac.Vector) - ab.Angle(bc.Vector) + bc.Angle(ac.Vector))
if area < 0 {
area = 0
}
return area
}
// SignedArea returns a positive value for counterclockwise triangles and a negative
// value otherwise (similar to PointArea).
func SignedArea(a, b, c Point) float64 {
return float64(RobustSign(a, b, c)) * PointArea(a, b, c)
}
// TrueCentroid returns the true centroid of the spherical triangle ABC multiplied by the
// signed area of spherical triangle ABC. The result is not normalized.
// The reasons for multiplying by the signed area are (1) this is the quantity
// that needs to be summed to compute the centroid of a union or difference of triangles,
// and (2) it's actually easier to calculate this way. All points must have unit length.
//
// The true centroid (mass centroid) is defined as the surface integral
// over the spherical triangle of (x,y,z) divided by the triangle area.
// This is the point that the triangle would rotate around if it was
// spinning in empty space.
//
// The best centroid for most purposes is the true centroid. Unlike the
// planar and surface centroids, the true centroid behaves linearly as
// regions are added or subtracted. That is, if you split a triangle into
// pieces and compute the average of their centroids (weighted by triangle
// area), the result equals the centroid of the original triangle. This is
// not true of the other centroids.
func TrueCentroid(a, b, c Point) Point {
ra := float64(1)
if sa := float64(b.Distance(c)); sa != 0 {
ra = sa / math.Sin(sa)
}
rb := float64(1)
if sb := float64(c.Distance(a)); sb != 0 {
rb = sb / math.Sin(sb)
}
rc := float64(1)
if sc := float64(a.Distance(b)); sc != 0 {
rc = sc / math.Sin(sc)
}
// Now compute a point M such that:
//
// [Ax Ay Az] [Mx] [ra]
// [Bx By Bz] [My] = 0.5 * det(A,B,C) * [rb]
// [Cx Cy Cz] [Mz] [rc]
//
// To improve the numerical stability we subtract the first row (A) from the
// other two rows; this reduces the cancellation error when A, B, and C are
// very close together. Then we solve it using Cramer's rule.
//
// This code still isn't as numerically stable as it could be.
// The biggest potential improvement is to compute B-A and C-A more
// accurately so that (B-A)x(C-A) is always inside triangle ABC.
x := r3.Vector{a.X, b.X - a.X, c.X - a.X}
y := r3.Vector{a.Y, b.Y - a.Y, c.Y - a.Y}
z := r3.Vector{a.Z, b.Z - a.Z, c.Z - a.Z}
r := r3.Vector{ra, rb - ra, rc - ra}
return Point{r3.Vector{y.Cross(z).Dot(r), z.Cross(x).Dot(r), x.Cross(y).Dot(r)}.Mul(0.5)}
}
// PlanarCentroid returns the centroid of the planar triangle ABC, which is not normalized.
// It can be normalized to unit length to obtain the "surface centroid" of the corresponding
// spherical triangle, i.e. the intersection of the three medians. However,
// note that for large spherical triangles the surface centroid may be
// nowhere near the intuitive "center" (see example in TrueCentroid comments).
//
// Note that the surface centroid may be nowhere near the intuitive
// "center" of a spherical triangle. For example, consider the triangle
// with vertices A=(1,eps,0), B=(0,0,1), C=(-1,eps,0) (a quarter-sphere).
// The surface centroid of this triangle is at S=(0, 2*eps, 1), which is
// within a distance of 2*eps of the vertex B. Note that the median from A
// (the segment connecting A to the midpoint of BC) passes through S, since
// this is the shortest path connecting the two endpoints. On the other
// hand, the true centroid is at M=(0, 0.5, 0.5), which when projected onto
// the surface is a much more reasonable interpretation of the "center" of
// this triangle.
func PlanarCentroid(a, b, c Point) Point {
return Point{a.Add(b.Vector).Add(c.Vector).Mul(1. / 3)}
}
// ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance
// between the two given points. The points must be unit length.
func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle {
return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2()))
}
// regularPoints generates a slice of points shaped as a regular polygon with
// the numVertices vertices, all located on a circle of the specified angular radius
// around the center. The radius is the actual distance from center to each vertex.
func regularPoints(center Point, radius s1.Angle, numVertices int) []Point {
return regularPointsForFrame(getFrame(center), radius, numVertices)
}
// regularPointsForFrame generates a slice of points shaped as a regular polygon
// with numVertices vertices, all on a circle of the specified angular radius around
// the center. The radius is the actual distance from the center to each vertex.
func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point {
// We construct the loop in the given frame coordinates, with the center at
// (0, 0, 1). For a loop of radius r, the loop vertices have the form
// (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the
// sphere (arc length) from each vertex to the center is acos(cos(r)) = r.
z := math.Cos(radius.Radians())
r := math.Sin(radius.Radians())
radianStep := 2 * math.Pi / float64(numVertices)
var vertices []Point
for i := 0; i < numVertices; i++ {
angle := float64(i) * radianStep
p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}}
vertices = append(vertices, Point{fromFrame(frame, p).Normalize()})
}
return vertices
}
// CapBound returns a bounding cap for this point.
func (p Point) CapBound() Cap {
return CapFromPoint(p)
}
// RectBound returns a bounding latitude-longitude rectangle from this point.
func (p Point) RectBound() Rect {
return RectFromLatLng(LatLngFromPoint(p))
}
// ContainsCell returns false as Points do not contain any other S2 types.
func (p Point) ContainsCell(c Cell) bool { return false }
// IntersectsCell reports whether this Point intersects the given cell.
func (p Point) IntersectsCell(c Cell) bool {
return c.ContainsPoint(p)
}
// ContainsPoint reports if this Point contains the other Point.
// (This method is named to satisfy the Region interface.)
func (p Point) ContainsPoint(other Point) bool {
return p.Contains(other)
}
// CellUnionBound computes a covering of the Point.
func (p Point) CellUnionBound() []CellID {
return p.CapBound().CellUnionBound()
}
// Contains reports if this Point contains the other Point.
// (This method matches all other s2 types where the reflexive Contains
// method does not contain the type's name.)
func (p Point) Contains(other Point) bool { return p == other }
// Encode encodes the Point.
func (p Point) Encode(w io.Writer) error {
e := &encoder{w: w}
p.encode(e)
return e.err
}
func (p Point) encode(e *encoder) {
e.writeInt8(encodingVersion)
e.writeFloat64(p.X)
e.writeFloat64(p.Y)
e.writeFloat64(p.Z)
}
// Decode decodes the Point.
func (p *Point) Decode(r io.Reader) error {
d := &decoder{r: asByteReader(r)}
p.decode(d)
return d.err
}
func (p *Point) decode(d *decoder) {
version := d.readInt8()
if d.err != nil {
return
}
if version != encodingVersion {
d.err = fmt.Errorf("only version %d is supported", encodingVersion)
return
}
p.X = d.readFloat64()
p.Y = d.readFloat64()
p.Z = d.readFloat64()
}
// Angle returns the interior angle at the vertex B in the triangle ABC. The
// return value is always in the range [0, pi]. All points should be
// normalized. Ensures that Angle(a,b,c) == Angle(c,b,a) for all a,b,c.
//
// The angle is undefined if A or C is diametrically opposite from B, and
// becomes numerically unstable as the length of edge AB or BC approaches
// 180 degrees.
func Angle(a, b, c Point) s1.Angle {
return a.PointCross(b).Angle(c.PointCross(b).Vector)
}
// TurnAngle returns the exterior angle at vertex B in the triangle ABC. The
// return value is positive if ABC is counterclockwise and negative otherwise.
// If you imagine an ant walking from A to B to C, this is the angle that the
// ant turns at vertex B (positive = left = CCW, negative = right = CW).
// This quantity is also known as the "geodesic curvature" at B.
//
// Ensures that TurnAngle(a,b,c) == -TurnAngle(c,b,a) for all distinct
// a,b,c. The result is undefined if (a == b || b == c), but is either
// -Pi or Pi if (a == c). All points should be normalized.
func TurnAngle(a, b, c Point) s1.Angle {
// We use PointCross to get good accuracy when two points are very
// close together, and RobustSign to ensure that the sign is correct for
// turns that are close to 180 degrees.
angle := a.PointCross(b).Angle(b.PointCross(c).Vector)
// Don't return RobustSign * angle because it is legal to have (a == c).
if RobustSign(a, b, c) == CounterClockwise {
return angle
}
return -angle
}
// Rotate the given point about the given axis by the given angle. p and
// axis must be unit length; angle has no restrictions (e.g., it can be
// positive, negative, greater than 360 degrees, etc).
func Rotate(p, axis Point, angle s1.Angle) Point {
// Let M be the plane through P that is perpendicular to axis, and let
// center be the point where M intersects axis. We construct a
// right-handed orthogonal frame (dx, dy, center) such that dx is the
// vector from center to P, and dy has the same length as dx. The
// result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center).
center := axis.Mul(p.Dot(axis.Vector))
dx := p.Sub(center)
dy := axis.Cross(p.Vector)
// Mathematically the result is unit length, but normalization is necessary
// to ensure that numerical errors don't accumulate.
return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()}
}