// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "fmt" "io" "math" "sort" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) // Point represents a point on the unit sphere as a normalized 3D vector. // Fields should be treated as read-only. Use one of the factory methods for creation. type Point struct { r3.Vector } // sortPoints sorts the slice of Points in place. func sortPoints(e []Point) { sort.Sort(points(e)) } // points implements the Sort interface for slices of Point. type points []Point func (p points) Len() int { return len(p) } func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 } // PointFromCoords creates a new normalized point from coordinates. // // This always returns a valid point. If the given coordinates can not be normalized // the origin point will be returned. // // This behavior is different from the C++ construction of a S2Point from coordinates // (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize. func PointFromCoords(x, y, z float64) Point { if x == 0 && y == 0 && z == 0 { return OriginPoint() } return Point{r3.Vector{x, y, z}.Normalize()} } // OriginPoint returns a unique "origin" on the sphere for operations that need a fixed // reference point. In particular, this is the "point at infinity" used for // point-in-polygon testing (by counting the number of edge crossings). // // It should *not* be a point that is commonly used in edge tests in order // to avoid triggering code to handle degenerate cases (this rules out the // north and south poles). It should also not be on the boundary of any // low-level S2Cell for the same reason. func OriginPoint() Point { return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}} } // PointCross returns a Point that is orthogonal to both p and op. This is similar to // p.Cross(op) (the true cross product) except that it does a better job of // ensuring orthogonality when the Point is nearly parallel to op, it returns // a non-zero result even when p == op or p == -op and the result is a Point. // // It satisfies the following properties (f == PointCross): // // (1) f(p, op) != 0 for all p, op // (2) f(op,p) == -f(p,op) unless p == op or p == -op // (3) f(-p,op) == -f(p,op) unless p == op or p == -op // (4) f(p,-op) == -f(p,op) unless p == op or p == -op func (p Point) PointCross(op Point) Point { // NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd", // but PointCross more accurately describes how this method is used. x := p.Add(op.Vector).Cross(op.Sub(p.Vector)) // Compare exactly to the 0 vector. if x == (r3.Vector{}) { // The only result that makes sense mathematically is to return zero, but // we find it more convenient to return an arbitrary orthogonal vector. return Point{p.Ortho()} } return Point{x} } // OrderedCCW returns true if the edges OA, OB, and OC are encountered in that // order while sweeping CCW around the point O. // // You can think of this as testing whether A <= B <= C with respect to the // CCW ordering around O that starts at A, or equivalently, whether B is // contained in the range of angles (inclusive) that starts at A and extends // CCW to C. Properties: // // (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b // (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c // (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c // (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true // (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false func OrderedCCW(a, b, c, o Point) bool { sum := 0 if RobustSign(b, o, a) != Clockwise { sum++ } if RobustSign(c, o, b) != Clockwise { sum++ } if RobustSign(a, o, c) == CounterClockwise { sum++ } return sum >= 2 } // Distance returns the angle between two points. func (p Point) Distance(b Point) s1.Angle { return p.Vector.Angle(b.Vector) } // ApproxEqual reports whether the two points are similar enough to be equal. func (p Point) ApproxEqual(other Point) bool { return p.Vector.Angle(other.Vector) <= s1.Angle(epsilon) } // PointArea returns the area on the unit sphere for the triangle defined by the // given points. // // This method is based on l'Huilier's theorem, // // tan(E/4) = sqrt(tan(s/2) tan((s-a)/2) tan((s-b)/2) tan((s-c)/2)) // // where E is the spherical excess of the triangle (i.e. its area), // a, b, c are the side lengths, and // s is the semiperimeter (a + b + c) / 2. // // The only significant source of error using l'Huilier's method is the // cancellation error of the terms (s-a), (s-b), (s-c). This leads to a // *relative* error of about 1e-16 * s / min(s-a, s-b, s-c). This compares // to a relative error of about 1e-15 / E using Girard's formula, where E is // the true area of the triangle. Girard's formula can be even worse than // this for very small triangles, e.g. a triangle with a true area of 1e-30 // might evaluate to 1e-5. // // So, we prefer l'Huilier's formula unless dmin < s * (0.1 * E), where // dmin = min(s-a, s-b, s-c). This basically includes all triangles // except for extremely long and skinny ones. // // Since we don't know E, we would like a conservative upper bound on // the triangle area in terms of s and dmin. It's possible to show that // E <= k1 * s * sqrt(s * dmin), where k1 = 2*sqrt(3)/Pi (about 1). // Using this, it's easy to show that we should always use l'Huilier's // method if dmin >= k2 * s^5, where k2 is about 1e-2. Furthermore, // if dmin < k2 * s^5, the triangle area is at most k3 * s^4, where // k3 is about 0.1. Since the best case error using Girard's formula // is about 1e-15, this means that we shouldn't even consider it unless // s >= 3e-4 or so. func PointArea(a, b, c Point) float64 { sa := float64(b.Angle(c.Vector)) sb := float64(c.Angle(a.Vector)) sc := float64(a.Angle(b.Vector)) s := 0.5 * (sa + sb + sc) if s >= 3e-4 { // Consider whether Girard's formula might be more accurate. dmin := s - math.Max(sa, math.Max(sb, sc)) if dmin < 1e-2*s*s*s*s*s { // This triangle is skinny enough to use Girard's formula. area := GirardArea(a, b, c) if dmin < s*0.1*area { return area } } } // Use l'Huilier's formula. return 4 * math.Atan(math.Sqrt(math.Max(0.0, math.Tan(0.5*s)*math.Tan(0.5*(s-sa))* math.Tan(0.5*(s-sb))*math.Tan(0.5*(s-sc))))) } // GirardArea returns the area of the triangle computed using Girard's formula. // All points should be unit length, and no two points should be antipodal. // // This method is about twice as fast as PointArea() but has poor relative // accuracy for small triangles. The maximum error is about 5e-15 (about // 0.25 square meters on the Earth's surface) and the average error is about // 1e-15. These bounds apply to triangles of any size, even as the maximum // edge length of the triangle approaches 180 degrees. But note that for // such triangles, tiny perturbations of the input points can change the // true mathematical area dramatically. func GirardArea(a, b, c Point) float64 { // This is equivalent to the usual Girard's formula but is slightly more // accurate, faster to compute, and handles a == b == c without a special // case. PointCross is necessary to get good accuracy when two of // the input points are very close together. ab := a.PointCross(b) bc := b.PointCross(c) ac := a.PointCross(c) area := float64(ab.Angle(ac.Vector) - ab.Angle(bc.Vector) + bc.Angle(ac.Vector)) if area < 0 { area = 0 } return area } // SignedArea returns a positive value for counterclockwise triangles and a negative // value otherwise (similar to PointArea). func SignedArea(a, b, c Point) float64 { return float64(RobustSign(a, b, c)) * PointArea(a, b, c) } // TrueCentroid returns the true centroid of the spherical triangle ABC multiplied by the // signed area of spherical triangle ABC. The result is not normalized. // The reasons for multiplying by the signed area are (1) this is the quantity // that needs to be summed to compute the centroid of a union or difference of triangles, // and (2) it's actually easier to calculate this way. All points must have unit length. // // The true centroid (mass centroid) is defined as the surface integral // over the spherical triangle of (x,y,z) divided by the triangle area. // This is the point that the triangle would rotate around if it was // spinning in empty space. // // The best centroid for most purposes is the true centroid. Unlike the // planar and surface centroids, the true centroid behaves linearly as // regions are added or subtracted. That is, if you split a triangle into // pieces and compute the average of their centroids (weighted by triangle // area), the result equals the centroid of the original triangle. This is // not true of the other centroids. func TrueCentroid(a, b, c Point) Point { ra := float64(1) if sa := float64(b.Distance(c)); sa != 0 { ra = sa / math.Sin(sa) } rb := float64(1) if sb := float64(c.Distance(a)); sb != 0 { rb = sb / math.Sin(sb) } rc := float64(1) if sc := float64(a.Distance(b)); sc != 0 { rc = sc / math.Sin(sc) } // Now compute a point M such that: // // [Ax Ay Az] [Mx] [ra] // [Bx By Bz] [My] = 0.5 * det(A,B,C) * [rb] // [Cx Cy Cz] [Mz] [rc] // // To improve the numerical stability we subtract the first row (A) from the // other two rows; this reduces the cancellation error when A, B, and C are // very close together. Then we solve it using Cramer's rule. // // This code still isn't as numerically stable as it could be. // The biggest potential improvement is to compute B-A and C-A more // accurately so that (B-A)x(C-A) is always inside triangle ABC. x := r3.Vector{a.X, b.X - a.X, c.X - a.X} y := r3.Vector{a.Y, b.Y - a.Y, c.Y - a.Y} z := r3.Vector{a.Z, b.Z - a.Z, c.Z - a.Z} r := r3.Vector{ra, rb - ra, rc - ra} return Point{r3.Vector{y.Cross(z).Dot(r), z.Cross(x).Dot(r), x.Cross(y).Dot(r)}.Mul(0.5)} } // PlanarCentroid returns the centroid of the planar triangle ABC, which is not normalized. // It can be normalized to unit length to obtain the "surface centroid" of the corresponding // spherical triangle, i.e. the intersection of the three medians. However, // note that for large spherical triangles the surface centroid may be // nowhere near the intuitive "center" (see example in TrueCentroid comments). // // Note that the surface centroid may be nowhere near the intuitive // "center" of a spherical triangle. For example, consider the triangle // with vertices A=(1,eps,0), B=(0,0,1), C=(-1,eps,0) (a quarter-sphere). // The surface centroid of this triangle is at S=(0, 2*eps, 1), which is // within a distance of 2*eps of the vertex B. Note that the median from A // (the segment connecting A to the midpoint of BC) passes through S, since // this is the shortest path connecting the two endpoints. On the other // hand, the true centroid is at M=(0, 0.5, 0.5), which when projected onto // the surface is a much more reasonable interpretation of the "center" of // this triangle. func PlanarCentroid(a, b, c Point) Point { return Point{a.Add(b.Vector).Add(c.Vector).Mul(1. / 3)} } // ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance // between the two given points. The points must be unit length. func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle { return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2())) } // regularPoints generates a slice of points shaped as a regular polygon with // the numVertices vertices, all located on a circle of the specified angular radius // around the center. The radius is the actual distance from center to each vertex. func regularPoints(center Point, radius s1.Angle, numVertices int) []Point { return regularPointsForFrame(getFrame(center), radius, numVertices) } // regularPointsForFrame generates a slice of points shaped as a regular polygon // with numVertices vertices, all on a circle of the specified angular radius around // the center. The radius is the actual distance from the center to each vertex. func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point { // We construct the loop in the given frame coordinates, with the center at // (0, 0, 1). For a loop of radius r, the loop vertices have the form // (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the // sphere (arc length) from each vertex to the center is acos(cos(r)) = r. z := math.Cos(radius.Radians()) r := math.Sin(radius.Radians()) radianStep := 2 * math.Pi / float64(numVertices) var vertices []Point for i := 0; i < numVertices; i++ { angle := float64(i) * radianStep p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}} vertices = append(vertices, Point{fromFrame(frame, p).Normalize()}) } return vertices } // CapBound returns a bounding cap for this point. func (p Point) CapBound() Cap { return CapFromPoint(p) } // RectBound returns a bounding latitude-longitude rectangle from this point. func (p Point) RectBound() Rect { return RectFromLatLng(LatLngFromPoint(p)) } // ContainsCell returns false as Points do not contain any other S2 types. func (p Point) ContainsCell(c Cell) bool { return false } // IntersectsCell reports whether this Point intersects the given cell. func (p Point) IntersectsCell(c Cell) bool { return c.ContainsPoint(p) } // ContainsPoint reports if this Point contains the other Point. // (This method is named to satisfy the Region interface.) func (p Point) ContainsPoint(other Point) bool { return p.Contains(other) } // CellUnionBound computes a covering of the Point. func (p Point) CellUnionBound() []CellID { return p.CapBound().CellUnionBound() } // Contains reports if this Point contains the other Point. // (This method matches all other s2 types where the reflexive Contains // method does not contain the type's name.) func (p Point) Contains(other Point) bool { return p == other } // Encode encodes the Point. func (p Point) Encode(w io.Writer) error { e := &encoder{w: w} p.encode(e) return e.err } func (p Point) encode(e *encoder) { e.writeInt8(encodingVersion) e.writeFloat64(p.X) e.writeFloat64(p.Y) e.writeFloat64(p.Z) } // Decode decodes the Point. func (p *Point) Decode(r io.Reader) error { d := &decoder{r: asByteReader(r)} p.decode(d) return d.err } func (p *Point) decode(d *decoder) { version := d.readInt8() if d.err != nil { return } if version != encodingVersion { d.err = fmt.Errorf("only version %d is supported", encodingVersion) return } p.X = d.readFloat64() p.Y = d.readFloat64() p.Z = d.readFloat64() } // Angle returns the interior angle at the vertex B in the triangle ABC. The // return value is always in the range [0, pi]. All points should be // normalized. Ensures that Angle(a,b,c) == Angle(c,b,a) for all a,b,c. // // The angle is undefined if A or C is diametrically opposite from B, and // becomes numerically unstable as the length of edge AB or BC approaches // 180 degrees. func Angle(a, b, c Point) s1.Angle { return a.PointCross(b).Angle(c.PointCross(b).Vector) } // TurnAngle returns the exterior angle at vertex B in the triangle ABC. The // return value is positive if ABC is counterclockwise and negative otherwise. // If you imagine an ant walking from A to B to C, this is the angle that the // ant turns at vertex B (positive = left = CCW, negative = right = CW). // This quantity is also known as the "geodesic curvature" at B. // // Ensures that TurnAngle(a,b,c) == -TurnAngle(c,b,a) for all distinct // a,b,c. The result is undefined if (a == b || b == c), but is either // -Pi or Pi if (a == c). All points should be normalized. func TurnAngle(a, b, c Point) s1.Angle { // We use PointCross to get good accuracy when two points are very // close together, and RobustSign to ensure that the sign is correct for // turns that are close to 180 degrees. angle := a.PointCross(b).Angle(b.PointCross(c).Vector) // Don't return RobustSign * angle because it is legal to have (a == c). if RobustSign(a, b, c) == CounterClockwise { return angle } return -angle } // Rotate the given point about the given axis by the given angle. p and // axis must be unit length; angle has no restrictions (e.g., it can be // positive, negative, greater than 360 degrees, etc). func Rotate(p, axis Point, angle s1.Angle) Point { // Let M be the plane through P that is perpendicular to axis, and let // center be the point where M intersects axis. We construct a // right-handed orthogonal frame (dx, dy, center) such that dx is the // vector from center to P, and dy has the same length as dx. The // result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center). center := axis.Mul(p.Dot(axis.Vector)) dx := p.Sub(center) dy := axis.Cross(p.Vector) // Mathematically the result is unit length, but normalization is necessary // to ensure that numerical errors don't accumulate. return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()} }