1
0
Fork 0
mirror of https://github.com/Luzifer/badge-gen.git synced 2025-01-08 01:11:50 +00:00
badge-gen/vendor/github.com/gorilla/mux
2016-06-28 19:38:58 +02:00
..
.travis.yml Update Godeps 2016-06-28 19:38:58 +02:00
doc.go Update Godeps 2016-06-28 19:38:58 +02:00
LICENSE Update Godeps 2016-06-28 19:38:58 +02:00
mux.go Update Godeps 2016-06-28 19:38:58 +02:00
README.md Update Godeps 2016-06-28 19:38:58 +02:00
regexp.go Update Godeps 2016-06-28 19:38:58 +02:00
route.go Update Godeps 2016-06-28 19:38:58 +02:00

mux

GoDoc Build Status

Package gorilla/mux implements a request router and dispatcher.

The name mux stands for "HTTP request multiplexer". Like the standard http.ServeMux, mux.Router matches incoming requests against a list of registered routes and calls a handler for the route that matches the URL or other conditions. The main features are:

* Requests can be matched based on URL host, path, path prefix, schemes,
  header and query values, HTTP methods or using custom matchers.
* URL hosts and paths can have variables with an optional regular
  expression.
* Registered URLs can be built, or "reversed", which helps maintaining
  references to resources.
* Routes can be used as subrouters: nested routes are only tested if the
  parent route matches. This is useful to define groups of routes that
  share common conditions like a host, a path prefix or other repeated
  attributes. As a bonus, this optimizes request matching.
* It implements the http.Handler interface so it is compatible with the
  standard http.ServeMux.

Let's start registering a couple of URL paths and handlers:

func main() {
	r := mux.NewRouter()
	r.HandleFunc("/", HomeHandler)
	r.HandleFunc("/products", ProductsHandler)
	r.HandleFunc("/articles", ArticlesHandler)
	http.Handle("/", r)
}

Here we register three routes mapping URL paths to handlers. This is equivalent to how http.HandleFunc() works: if an incoming request URL matches one of the paths, the corresponding handler is called passing (http.ResponseWriter, *http.Request) as parameters.

Paths can have variables. They are defined using the format {name} or {name:pattern}. If a regular expression pattern is not defined, the matched variable will be anything until the next slash. For example:

r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)

The names are used to create a map of route variables which can be retrieved calling mux.Vars():

vars := mux.Vars(request)
category := vars["category"]

And this is all you need to know about the basic usage. More advanced options are explained below.

Routes can also be restricted to a domain or subdomain. Just define a host pattern to be matched. They can also have variables:

r := mux.NewRouter()
// Only matches if domain is "www.example.com".
r.Host("www.example.com")
// Matches a dynamic subdomain.
r.Host("{subdomain:[a-z]+}.domain.com")

There are several other matchers that can be added. To match path prefixes:

r.PathPrefix("/products/")

...or HTTP methods:

r.Methods("GET", "POST")

...or URL schemes:

r.Schemes("https")

...or header values:

r.Headers("X-Requested-With", "XMLHttpRequest")

...or query values:

r.Queries("key", "value")

...or to use a custom matcher function:

r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool {
	return r.ProtoMajor == 0
})

...and finally, it is possible to combine several matchers in a single route:

r.HandleFunc("/products", ProductsHandler).
  Host("www.example.com").
  Methods("GET").
  Schemes("http")

Setting the same matching conditions again and again can be boring, so we have a way to group several routes that share the same requirements. We call it "subrouting".

For example, let's say we have several URLs that should only match when the host is www.example.com. Create a route for that host and get a "subrouter" from it:

r := mux.NewRouter()
s := r.Host("www.example.com").Subrouter()

Then register routes in the subrouter:

s.HandleFunc("/products/", ProductsHandler)
s.HandleFunc("/products/{key}", ProductHandler)
s.HandleFunc("/articles/{category}/{id:[0-9]+}"), ArticleHandler)

The three URL paths we registered above will only be tested if the domain is www.example.com, because the subrouter is tested first. This is not only convenient, but also optimizes request matching. You can create subrouters combining any attribute matchers accepted by a route.

Subrouters can be used to create domain or path "namespaces": you define subrouters in a central place and then parts of the app can register its paths relatively to a given subrouter.

There's one more thing about subroutes. When a subrouter has a path prefix, the inner routes use it as base for their paths:

r := mux.NewRouter()
s := r.PathPrefix("/products").Subrouter()
// "/products/"
s.HandleFunc("/", ProductsHandler)
// "/products/{key}/"
s.HandleFunc("/{key}/", ProductHandler)
// "/products/{key}/details"
s.HandleFunc("/{key}/details", ProductDetailsHandler)

Now let's see how to build registered URLs.

Routes can be named. All routes that define a name can have their URLs built, or "reversed". We define a name calling Name() on a route. For example:

r := mux.NewRouter()
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
  Name("article")

To build a URL, get the route and call the URL() method, passing a sequence of key/value pairs for the route variables. For the previous route, we would do:

url, err := r.Get("article").URL("category", "technology", "id", "42")

...and the result will be a url.URL with the following path:

"/articles/technology/42"

This also works for host variables:

r := mux.NewRouter()
r.Host("{subdomain}.domain.com").
  Path("/articles/{category}/{id:[0-9]+}").
  HandlerFunc(ArticleHandler).
  Name("article")

// url.String() will be "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
                                 "category", "technology",
                                 "id", "42")

All variables defined in the route are required, and their values must conform to the corresponding patterns. These requirements guarantee that a generated URL will always match a registered route -- the only exception is for explicitly defined "build-only" routes which never match.

Regex support also exists for matching Headers within a route. For example, we could do:

r.HeadersRegexp("Content-Type", "application/(text|json)")

...and the route will match both requests with a Content-Type of application/json as well as application/text

There's also a way to build only the URL host or path for a route: use the methods URLHost() or URLPath() instead. For the previous route, we would do:

// "http://news.domain.com/"
host, err := r.Get("article").URLHost("subdomain", "news")

// "/articles/technology/42"
path, err := r.Get("article").URLPath("category", "technology", "id", "42")

And if you use subrouters, host and path defined separately can be built as well:

r := mux.NewRouter()
s := r.Host("{subdomain}.domain.com").Subrouter()
s.Path("/articles/{category}/{id:[0-9]+}").
  HandlerFunc(ArticleHandler).
  Name("article")

// "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
                                 "category", "technology",
                                 "id", "42")

Full Example

Here's a complete, runnable example of a small mux based server:

package main

import (
	"net/http"

	"github.com/gorilla/mux"
)

func YourHandler(w http.ResponseWriter, r *http.Request) {
	w.Write([]byte("Gorilla!\n"))
}

func main() {
	r := mux.NewRouter()
	// Routes consist of a path and a handler function.
	r.HandleFunc("/", YourHandler)

	// Bind to a port and pass our router in
	http.ListenAndServe(":8000", r)
}

License

BSD licensed. See the LICENSE file for details.