1
0
Fork 0
mirror of https://github.com/Luzifer/badge-gen.git synced 2024-11-08 13:20:02 +00:00

Update Godeps

This commit is contained in:
Knut Ahlers 2016-06-28 19:38:58 +02:00
parent f14dfcdc87
commit 53d540170f
Signed by: luzifer
GPG key ID: DC2729FDD34BE99E
111 changed files with 28225 additions and 11 deletions

77
Godeps/Godeps.json generated
View file

@ -1,35 +1,90 @@
{
"ImportPath": "github.com/Luzifer/badge-gen",
"GoVersion": "go1.4.2",
"GoVersion": "go1.6",
"GodepVersion": "v62",
"Deps": [
{
"ImportPath": "code.google.com/p/freetype-go/freetype/truetype",
"Comment": "release-85",
"Rev": "46c3056cafbb4da11c4087a892c7d2bfa4224a8f"
"ImportPath": "github.com/Luzifer/rconfig",
"Comment": "v1.1.0",
"Rev": "c27bd3a64b5b19556914d9fec69922cf3852d585"
},
{
"ImportPath": "github.com/alecthomas/template",
"Rev": "c08b835da7d1f28aa5b914921b914071be8d2d5c"
"ImportPath": "github.com/golang/freetype/raster",
"Comment": "release-131-g38b4c39",
"Rev": "38b4c392adc5eed94207994c4848fff99f4ac234"
},
{
"ImportPath": "github.com/golang/freetype/truetype",
"Comment": "release-131-g38b4c39",
"Rev": "38b4c392adc5eed94207994c4848fff99f4ac234"
},
{
"ImportPath": "github.com/gorilla/context",
"Rev": "14f550f51af52180c2eefed15e5fd18d63c0a64a"
"Rev": "1c83b3eabd45b6d76072b66b746c20815fb2872d"
},
{
"ImportPath": "github.com/gorilla/mux",
"Rev": "660d31f8602b95058fed6833debf113e85350868"
"Rev": "49c024275504f0341e5a9971eb7ba7fa3dc7af40"
},
{
"ImportPath": "github.com/spf13/pflag",
"Rev": "367864438f1b1a3c7db4da06a2f55b144e6784e0"
},
{
"ImportPath": "github.com/tdewolff/buffer",
"Rev": "8ff0a82a07bd36d4cf1e8728015553e67d720100"
"Comment": "v1.0.0-6-g0edfcb7",
"Rev": "0edfcb7b750146ff879e95831de2ef53605a5cb5"
},
{
"ImportPath": "github.com/tdewolff/minify",
"Rev": "a974e906cf4a3d88031daea7ce70211c3ad2cbb9"
"Comment": "v2.0.0-85-g28aac1f",
"Rev": "28aac1f92d928dfb63dd0258a3b2248a020e86da"
},
{
"ImportPath": "github.com/tdewolff/minify/css",
"Comment": "v2.0.0-85-g28aac1f",
"Rev": "28aac1f92d928dfb63dd0258a3b2248a020e86da"
},
{
"ImportPath": "github.com/tdewolff/minify/svg",
"Comment": "v2.0.0-85-g28aac1f",
"Rev": "28aac1f92d928dfb63dd0258a3b2248a020e86da"
},
{
"ImportPath": "github.com/tdewolff/parse",
"Rev": "faf467f7e305130ee8d98bcfa6fa87d35c35e67b"
"Comment": "v2.0.0-2-g34d5c11",
"Rev": "34d5c1160d4503da4b456e5094609f2331d6dde3"
},
{
"ImportPath": "github.com/tdewolff/parse/css",
"Comment": "v2.0.0-2-g34d5c11",
"Rev": "34d5c1160d4503da4b456e5094609f2331d6dde3"
},
{
"ImportPath": "github.com/tdewolff/parse/svg",
"Comment": "v2.0.0-2-g34d5c11",
"Rev": "34d5c1160d4503da4b456e5094609f2331d6dde3"
},
{
"ImportPath": "github.com/tdewolff/parse/xml",
"Comment": "v2.0.0-2-g34d5c11",
"Rev": "34d5c1160d4503da4b456e5094609f2331d6dde3"
},
{
"ImportPath": "github.com/tdewolff/strconv",
"Rev": "3e8091f4417ebaaa3910da63a45ea394ebbfb0e3"
},
{
"ImportPath": "golang.org/x/image/font",
"Rev": "97680175a5267bb8b31f1923e7a66df98013b11a"
},
{
"ImportPath": "golang.org/x/image/math/fixed",
"Rev": "97680175a5267bb8b31f1923e7a66df98013b11a"
},
{
"ImportPath": "gopkg.in/yaml.v2",
"Rev": "53feefa2559fb8dfa8d81baad31be332c97d6c77"
}
]
}

5
Godeps/Readme generated Normal file
View file

@ -0,0 +1,5 @@
This directory tree is generated automatically by godep.
Please do not edit.
See https://github.com/tools/godep for more information.

8
vendor/github.com/Luzifer/rconfig/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,8 @@
language: go
go:
- 1.4
- 1.5
- tip
script: go test -v -race -cover ./...

5
vendor/github.com/Luzifer/rconfig/History.md generated vendored Normal file
View file

@ -0,0 +1,5 @@
# 1.1.0 / 2016-06-28
* Support time.Duration config parameters
* Added goreportcard badge
* Added testcase for using bool with ENV and default

13
vendor/github.com/Luzifer/rconfig/LICENSE generated vendored Normal file
View file

@ -0,0 +1,13 @@
Copyright 2015 Knut Ahlers <knut@ahlers.me>
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.

94
vendor/github.com/Luzifer/rconfig/README.md generated vendored Normal file
View file

@ -0,0 +1,94 @@
[![Build Status](https://travis-ci.org/Luzifer/rconfig.svg?branch=master)](https://travis-ci.org/Luzifer/rconfig)
[![License: Apache v2.0](https://badge.luzifer.io/v1/badge?color=5d79b5&title=license&text=Apache+v2.0)](http://www.apache.org/licenses/LICENSE-2.0)
[![Documentation](https://badge.luzifer.io/v1/badge?title=godoc&text=reference)](https://godoc.org/github.com/Luzifer/rconfig)
[![Go Report](http://goreportcard.com/badge/Luzifer/rconfig)](http://goreportcard.com/report/Luzifer/rconfig)
## Description
> Package rconfig implements a CLI configuration reader with struct-embedded defaults, environment variables and posix compatible flag parsing using the [pflag](https://github.com/spf13/pflag) library.
## Installation
Install by running:
```
go get -u github.com/Luzifer/rconfig
```
OR fetch a specific version:
```
go get -u gopkg.in/luzifer/rconfig.v1
```
Run tests by running:
```
go test -v -race -cover github.com/Luzifer/rconfig
```
## Usage
As a first step define a struct holding your configuration:
```go
type config struct {
Username string `default:"unknown" flag:"user" description:"Your name"`
Details struct {
Age int `default:"25" flag:"age" env:"age" description:"Your age"`
}
}
```
Next create an instance of that struct and let `rconfig` fill that config:
```go
var cfg config
func init() {
cfg = config{}
rconfig.Parse(&cfg)
}
```
You're ready to access your configuration:
```go
func main() {
fmt.Printf("Hello %s, happy birthday for your %dth birthday.",
cfg.Username,
cfg.Details.Age)
}
```
### Provide variable defaults by using a file
Given you have a file `~/.myapp.yml` containing some secrets or usernames (for the example below username is assumed to be "luzifer") as a default configuration for your application you can use this source code to load the defaults from that file using the `vardefault` tag in your configuration struct.
The order of the directives (lower number = higher precedence):
1. Flags provided in command line
1. Environment variables
1. Variable defaults (`vardefault` tag in the struct)
1. `default` tag in the struct
```go
type config struct {
Username string `vardefault:"username" flag:"username" description:"Your username"`
}
var cfg = config{}
func init() {
rconfig.SetVariableDefaults(rconfig.VarDefaultsFromYAMLFile("~/.myapp.yml"))
rconfig.Parse(&cfg)
}
func main() {
fmt.Printf("Username = %s", cfg.Username)
// Output: Username = luzifer
}
```
## More info
You can see the full reference documentation of the rconfig package [at godoc.org](https://godoc.org/github.com/Luzifer/rconfig), or through go's standard documentation system by running `godoc -http=:6060` and browsing to [http://localhost:6060/pkg/github.com/Luzifer/rconfig](http://localhost:6060/pkg/github.com/Luzifer/rconfig) after installation.

338
vendor/github.com/Luzifer/rconfig/config.go generated vendored Normal file
View file

@ -0,0 +1,338 @@
// Package rconfig implements a CLI configuration reader with struct-embedded
// defaults, environment variables and posix compatible flag parsing using
// the pflag library.
package rconfig
import (
"errors"
"fmt"
"os"
"reflect"
"strconv"
"strings"
"time"
"github.com/spf13/pflag"
)
var (
fs *pflag.FlagSet
variableDefaults map[string]string
)
func init() {
variableDefaults = make(map[string]string)
}
// Parse takes the pointer to a struct filled with variables which should be read
// from ENV, default or flag. The precedence in this is flag > ENV > default. So
// if a flag is specified on the CLI it will overwrite the ENV and otherwise ENV
// overwrites the default specified.
//
// For your configuration struct you can use the following struct-tags to control
// the behavior of rconfig:
//
// default: Set a default value
// vardefault: Read the default value from the variable defaults
// env: Read the value from this environment variable
// flag: Flag to read in format "long,short" (for example "listen,l")
// description: A help text for Usage output to guide your users
//
// The format you need to specify those values you can see in the example to this
// function.
//
func Parse(config interface{}) error {
return parse(config, nil)
}
// Args returns the non-flag command-line arguments.
func Args() []string {
return fs.Args()
}
// Usage prints a basic usage with the corresponding defaults for the flags to
// os.Stdout. The defaults are derived from the `default` struct-tag and the ENV.
func Usage() {
if fs != nil && fs.Parsed() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
fs.PrintDefaults()
}
}
// SetVariableDefaults presets the parser with a map of default values to be used
// when specifying the vardefault tag
func SetVariableDefaults(defaults map[string]string) {
variableDefaults = defaults
}
func parse(in interface{}, args []string) error {
if args == nil {
args = os.Args
}
fs = pflag.NewFlagSet(os.Args[0], pflag.ExitOnError)
if err := execTags(in, fs); err != nil {
return err
}
return fs.Parse(args)
}
func execTags(in interface{}, fs *pflag.FlagSet) error {
if reflect.TypeOf(in).Kind() != reflect.Ptr {
return errors.New("Calling parser with non-pointer")
}
if reflect.ValueOf(in).Elem().Kind() != reflect.Struct {
return errors.New("Calling parser with pointer to non-struct")
}
st := reflect.ValueOf(in).Elem()
for i := 0; i < st.NumField(); i++ {
valField := st.Field(i)
typeField := st.Type().Field(i)
if typeField.Tag.Get("default") == "" && typeField.Tag.Get("env") == "" && typeField.Tag.Get("flag") == "" && typeField.Type.Kind() != reflect.Struct {
// None of our supported tags is present and it's not a sub-struct
continue
}
value := varDefault(typeField.Tag.Get("vardefault"), typeField.Tag.Get("default"))
value = envDefault(typeField.Tag.Get("env"), value)
parts := strings.Split(typeField.Tag.Get("flag"), ",")
switch typeField.Type {
case reflect.TypeOf(time.Duration(0)):
v, err := time.ParseDuration(value)
if err != nil {
if value == "" {
v = time.Duration(0)
} else {
return err
}
}
if typeField.Tag.Get("flag") != "" {
if len(parts) == 1 {
fs.DurationVar(valField.Addr().Interface().(*time.Duration), parts[0], v, typeField.Tag.Get("description"))
} else {
fs.DurationVarP(valField.Addr().Interface().(*time.Duration), parts[0], parts[1], v, typeField.Tag.Get("description"))
}
} else {
valField.Set(reflect.ValueOf(v))
}
continue
}
switch typeField.Type.Kind() {
case reflect.String:
if typeField.Tag.Get("flag") != "" {
if len(parts) == 1 {
fs.StringVar(valField.Addr().Interface().(*string), parts[0], value, typeField.Tag.Get("description"))
} else {
fs.StringVarP(valField.Addr().Interface().(*string), parts[0], parts[1], value, typeField.Tag.Get("description"))
}
} else {
valField.SetString(value)
}
case reflect.Bool:
v := value == "true"
if typeField.Tag.Get("flag") != "" {
if len(parts) == 1 {
fs.BoolVar(valField.Addr().Interface().(*bool), parts[0], v, typeField.Tag.Get("description"))
} else {
fs.BoolVarP(valField.Addr().Interface().(*bool), parts[0], parts[1], v, typeField.Tag.Get("description"))
}
} else {
valField.SetBool(v)
}
case reflect.Int, reflect.Int8, reflect.Int32, reflect.Int64:
vt, err := strconv.ParseInt(value, 10, 64)
if err != nil {
if value == "" {
vt = 0
} else {
return err
}
}
if typeField.Tag.Get("flag") != "" {
registerFlagInt(typeField.Type.Kind(), fs, valField.Addr().Interface(), parts, vt, typeField.Tag.Get("description"))
} else {
valField.SetInt(vt)
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64:
vt, err := strconv.ParseUint(value, 10, 64)
if err != nil {
if value == "" {
vt = 0
} else {
return err
}
}
if typeField.Tag.Get("flag") != "" {
registerFlagUint(typeField.Type.Kind(), fs, valField.Addr().Interface(), parts, vt, typeField.Tag.Get("description"))
} else {
valField.SetUint(vt)
}
case reflect.Float32, reflect.Float64:
vt, err := strconv.ParseFloat(value, 64)
if err != nil {
if value == "" {
vt = 0.0
} else {
return err
}
}
if typeField.Tag.Get("flag") != "" {
registerFlagFloat(typeField.Type.Kind(), fs, valField.Addr().Interface(), parts, vt, typeField.Tag.Get("description"))
} else {
valField.SetFloat(vt)
}
case reflect.Struct:
if err := execTags(valField.Addr().Interface(), fs); err != nil {
return err
}
case reflect.Slice:
switch typeField.Type.Elem().Kind() {
case reflect.Int:
def := []int{}
for _, v := range strings.Split(value, ",") {
it, err := strconv.ParseInt(strings.TrimSpace(v), 10, 64)
if err != nil {
return err
}
def = append(def, int(it))
}
if len(parts) == 1 {
fs.IntSliceVar(valField.Addr().Interface().(*[]int), parts[0], def, typeField.Tag.Get("description"))
} else {
fs.IntSliceVarP(valField.Addr().Interface().(*[]int), parts[0], parts[1], def, typeField.Tag.Get("description"))
}
case reflect.String:
del := typeField.Tag.Get("delimiter")
if len(del) == 0 {
del = ","
}
def := strings.Split(value, del)
if len(parts) == 1 {
fs.StringSliceVar(valField.Addr().Interface().(*[]string), parts[0], def, typeField.Tag.Get("description"))
} else {
fs.StringSliceVarP(valField.Addr().Interface().(*[]string), parts[0], parts[1], def, typeField.Tag.Get("description"))
}
}
}
}
return nil
}
func registerFlagFloat(t reflect.Kind, fs *pflag.FlagSet, field interface{}, parts []string, vt float64, desc string) {
switch t {
case reflect.Float32:
if len(parts) == 1 {
fs.Float32Var(field.(*float32), parts[0], float32(vt), desc)
} else {
fs.Float32VarP(field.(*float32), parts[0], parts[1], float32(vt), desc)
}
case reflect.Float64:
if len(parts) == 1 {
fs.Float64Var(field.(*float64), parts[0], float64(vt), desc)
} else {
fs.Float64VarP(field.(*float64), parts[0], parts[1], float64(vt), desc)
}
}
}
func registerFlagInt(t reflect.Kind, fs *pflag.FlagSet, field interface{}, parts []string, vt int64, desc string) {
switch t {
case reflect.Int:
if len(parts) == 1 {
fs.IntVar(field.(*int), parts[0], int(vt), desc)
} else {
fs.IntVarP(field.(*int), parts[0], parts[1], int(vt), desc)
}
case reflect.Int8:
if len(parts) == 1 {
fs.Int8Var(field.(*int8), parts[0], int8(vt), desc)
} else {
fs.Int8VarP(field.(*int8), parts[0], parts[1], int8(vt), desc)
}
case reflect.Int32:
if len(parts) == 1 {
fs.Int32Var(field.(*int32), parts[0], int32(vt), desc)
} else {
fs.Int32VarP(field.(*int32), parts[0], parts[1], int32(vt), desc)
}
case reflect.Int64:
if len(parts) == 1 {
fs.Int64Var(field.(*int64), parts[0], int64(vt), desc)
} else {
fs.Int64VarP(field.(*int64), parts[0], parts[1], int64(vt), desc)
}
}
}
func registerFlagUint(t reflect.Kind, fs *pflag.FlagSet, field interface{}, parts []string, vt uint64, desc string) {
switch t {
case reflect.Uint:
if len(parts) == 1 {
fs.UintVar(field.(*uint), parts[0], uint(vt), desc)
} else {
fs.UintVarP(field.(*uint), parts[0], parts[1], uint(vt), desc)
}
case reflect.Uint8:
if len(parts) == 1 {
fs.Uint8Var(field.(*uint8), parts[0], uint8(vt), desc)
} else {
fs.Uint8VarP(field.(*uint8), parts[0], parts[1], uint8(vt), desc)
}
case reflect.Uint16:
if len(parts) == 1 {
fs.Uint16Var(field.(*uint16), parts[0], uint16(vt), desc)
} else {
fs.Uint16VarP(field.(*uint16), parts[0], parts[1], uint16(vt), desc)
}
case reflect.Uint32:
if len(parts) == 1 {
fs.Uint32Var(field.(*uint32), parts[0], uint32(vt), desc)
} else {
fs.Uint32VarP(field.(*uint32), parts[0], parts[1], uint32(vt), desc)
}
case reflect.Uint64:
if len(parts) == 1 {
fs.Uint64Var(field.(*uint64), parts[0], uint64(vt), desc)
} else {
fs.Uint64VarP(field.(*uint64), parts[0], parts[1], uint64(vt), desc)
}
}
}
func envDefault(env, def string) string {
value := def
if env != "" {
if e := os.Getenv(env); e != "" {
value = e
}
}
return value
}
func varDefault(name, def string) string {
value := def
if name != "" {
if v, ok := variableDefaults[name]; ok {
value = v
}
}
return value
}

View file

@ -0,0 +1,27 @@
package rconfig
import (
"io/ioutil"
"gopkg.in/yaml.v2"
)
// VarDefaultsFromYAMLFile reads contents of a file and calls VarDefaultsFromYAML
func VarDefaultsFromYAMLFile(filename string) map[string]string {
data, err := ioutil.ReadFile(filename)
if err != nil {
return make(map[string]string)
}
return VarDefaultsFromYAML(data)
}
// VarDefaultsFromYAML creates a vardefaults map from YAML raw data
func VarDefaultsFromYAML(in []byte) map[string]string {
out := make(map[string]string)
err := yaml.Unmarshal(in, &out)
if err != nil {
return make(map[string]string)
}
return out
}

12
vendor/github.com/golang/freetype/LICENSE generated vendored Normal file
View file

@ -0,0 +1,12 @@
Use of the Freetype-Go software is subject to your choice of exactly one of
the following two licenses:
* The FreeType License, which is similar to the original BSD license with
an advertising clause, or
* The GNU General Public License (GPL), version 2 or later.
The text of these licenses are available in the licenses/ftl.txt and the
licenses/gpl.txt files respectively. They are also available at
http://freetype.sourceforge.net/license.html
The Luxi fonts in the testdata directory are licensed separately. See the
testdata/COPYING file for details.

245
vendor/github.com/golang/freetype/raster/geom.go generated vendored Normal file
View file

@ -0,0 +1,245 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
"fmt"
"math"
"golang.org/x/image/math/fixed"
)
// maxAbs returns the maximum of abs(a) and abs(b).
func maxAbs(a, b fixed.Int26_6) fixed.Int26_6 {
if a < 0 {
a = -a
}
if b < 0 {
b = -b
}
if a < b {
return b
}
return a
}
// pNeg returns the vector -p, or equivalently p rotated by 180 degrees.
func pNeg(p fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{-p.X, -p.Y}
}
// pDot returns the dot product p·q.
func pDot(p fixed.Point26_6, q fixed.Point26_6) fixed.Int52_12 {
px, py := int64(p.X), int64(p.Y)
qx, qy := int64(q.X), int64(q.Y)
return fixed.Int52_12(px*qx + py*qy)
}
// pLen returns the length of the vector p.
func pLen(p fixed.Point26_6) fixed.Int26_6 {
// TODO(nigeltao): use fixed point math.
x := float64(p.X)
y := float64(p.Y)
return fixed.Int26_6(math.Sqrt(x*x + y*y))
}
// pNorm returns the vector p normalized to the given length, or zero if p is
// degenerate.
func pNorm(p fixed.Point26_6, length fixed.Int26_6) fixed.Point26_6 {
d := pLen(p)
if d == 0 {
return fixed.Point26_6{}
}
s, t := int64(length), int64(d)
x := int64(p.X) * s / t
y := int64(p.Y) * s / t
return fixed.Point26_6{fixed.Int26_6(x), fixed.Int26_6(y)}
}
// pRot45CW returns the vector p rotated clockwise by 45 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CW is {1/√2, 1/√2}.
func pRot45CW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (+px - py) * 181 / 256
qy := (+px + py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// pRot90CW returns the vector p rotated clockwise by 90 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CW is {0, 1}.
func pRot90CW(p fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{-p.Y, p.X}
}
// pRot135CW returns the vector p rotated clockwise by 135 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CW is {-1/√2, 1/√2}.
func pRot135CW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (-px - py) * 181 / 256
qy := (+px - py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// pRot45CCW returns the vector p rotated counter-clockwise by 45 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot45CCW is {1/√2, -1/√2}.
func pRot45CCW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (+px + py) * 181 / 256
qy := (-px + py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// pRot90CCW returns the vector p rotated counter-clockwise by 90 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot90CCW is {0, -1}.
func pRot90CCW(p fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{p.Y, -p.X}
}
// pRot135CCW returns the vector p rotated counter-clockwise by 135 degrees.
//
// Note that the Y-axis grows downwards, so {1, 0}.Rot135CCW is {-1/√2, -1/√2}.
func pRot135CCW(p fixed.Point26_6) fixed.Point26_6 {
// 181/256 is approximately 1/√2, or sin(π/4).
px, py := int64(p.X), int64(p.Y)
qx := (-px + py) * 181 / 256
qy := (-px - py) * 181 / 256
return fixed.Point26_6{fixed.Int26_6(qx), fixed.Int26_6(qy)}
}
// An Adder accumulates points on a curve.
type Adder interface {
// Start starts a new curve at the given point.
Start(a fixed.Point26_6)
// Add1 adds a linear segment to the current curve.
Add1(b fixed.Point26_6)
// Add2 adds a quadratic segment to the current curve.
Add2(b, c fixed.Point26_6)
// Add3 adds a cubic segment to the current curve.
Add3(b, c, d fixed.Point26_6)
}
// A Path is a sequence of curves, and a curve is a start point followed by a
// sequence of linear, quadratic or cubic segments.
type Path []fixed.Int26_6
// String returns a human-readable representation of a Path.
func (p Path) String() string {
s := ""
for i := 0; i < len(p); {
if i != 0 {
s += " "
}
switch p[i] {
case 0:
s += "S0" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
i += 4
case 1:
s += "A1" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+3]))
i += 4
case 2:
s += "A2" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+5]))
i += 6
case 3:
s += "A3" + fmt.Sprint([]fixed.Int26_6(p[i+1:i+7]))
i += 8
default:
panic("freetype/raster: bad path")
}
}
return s
}
// Clear cancels any previous calls to p.Start or p.AddXxx.
func (p *Path) Clear() {
*p = (*p)[:0]
}
// Start starts a new curve at the given point.
func (p *Path) Start(a fixed.Point26_6) {
*p = append(*p, 0, a.X, a.Y, 0)
}
// Add1 adds a linear segment to the current curve.
func (p *Path) Add1(b fixed.Point26_6) {
*p = append(*p, 1, b.X, b.Y, 1)
}
// Add2 adds a quadratic segment to the current curve.
func (p *Path) Add2(b, c fixed.Point26_6) {
*p = append(*p, 2, b.X, b.Y, c.X, c.Y, 2)
}
// Add3 adds a cubic segment to the current curve.
func (p *Path) Add3(b, c, d fixed.Point26_6) {
*p = append(*p, 3, b.X, b.Y, c.X, c.Y, d.X, d.Y, 3)
}
// AddPath adds the Path q to p.
func (p *Path) AddPath(q Path) {
*p = append(*p, q...)
}
// AddStroke adds a stroked Path.
func (p *Path) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
Stroke(p, q, width, cr, jr)
}
// firstPoint returns the first point in a non-empty Path.
func (p Path) firstPoint() fixed.Point26_6 {
return fixed.Point26_6{p[1], p[2]}
}
// lastPoint returns the last point in a non-empty Path.
func (p Path) lastPoint() fixed.Point26_6 {
return fixed.Point26_6{p[len(p)-3], p[len(p)-2]}
}
// addPathReversed adds q reversed to p.
// For example, if q consists of a linear segment from A to B followed by a
// quadratic segment from B to C to D, then the values of q looks like:
// index: 01234567890123
// value: 0AA01BB12CCDD2
// So, when adding q backwards to p, we want to Add2(C, B) followed by Add1(A).
func addPathReversed(p Adder, q Path) {
if len(q) == 0 {
return
}
i := len(q) - 1
for {
switch q[i] {
case 0:
return
case 1:
i -= 4
p.Add1(
fixed.Point26_6{q[i-2], q[i-1]},
)
case 2:
i -= 6
p.Add2(
fixed.Point26_6{q[i+2], q[i+3]},
fixed.Point26_6{q[i-2], q[i-1]},
)
case 3:
i -= 8
p.Add3(
fixed.Point26_6{q[i+4], q[i+5]},
fixed.Point26_6{q[i+2], q[i+3]},
fixed.Point26_6{q[i-2], q[i-1]},
)
default:
panic("freetype/raster: bad path")
}
}
}

287
vendor/github.com/golang/freetype/raster/paint.go generated vendored Normal file
View file

@ -0,0 +1,287 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
"image"
"image/color"
"image/draw"
"math"
)
// A Span is a horizontal segment of pixels with constant alpha. X0 is an
// inclusive bound and X1 is exclusive, the same as for slices. A fully opaque
// Span has Alpha == 0xffff.
type Span struct {
Y, X0, X1 int
Alpha uint32
}
// A Painter knows how to paint a batch of Spans. Rasterization may involve
// Painting multiple batches, and done will be true for the final batch. The
// Spans' Y values are monotonically increasing during a rasterization. Paint
// may use all of ss as scratch space during the call.
type Painter interface {
Paint(ss []Span, done bool)
}
// The PainterFunc type adapts an ordinary function to the Painter interface.
type PainterFunc func(ss []Span, done bool)
// Paint just delegates the call to f.
func (f PainterFunc) Paint(ss []Span, done bool) { f(ss, done) }
// An AlphaOverPainter is a Painter that paints Spans onto a *image.Alpha using
// the Over Porter-Duff composition operator.
type AlphaOverPainter struct {
Image *image.Alpha
}
// Paint satisfies the Painter interface.
func (r AlphaOverPainter) Paint(ss []Span, done bool) {
b := r.Image.Bounds()
for _, s := range ss {
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
p := r.Image.Pix[base+s.X0 : base+s.X1]
a := int(s.Alpha >> 8)
for i, c := range p {
v := int(c)
p[i] = uint8((v*255 + (255-v)*a) / 255)
}
}
}
// NewAlphaOverPainter creates a new AlphaOverPainter for the given image.
func NewAlphaOverPainter(m *image.Alpha) AlphaOverPainter {
return AlphaOverPainter{m}
}
// An AlphaSrcPainter is a Painter that paints Spans onto a *image.Alpha using
// the Src Porter-Duff composition operator.
type AlphaSrcPainter struct {
Image *image.Alpha
}
// Paint satisfies the Painter interface.
func (r AlphaSrcPainter) Paint(ss []Span, done bool) {
b := r.Image.Bounds()
for _, s := range ss {
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
base := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride - r.Image.Rect.Min.X
p := r.Image.Pix[base+s.X0 : base+s.X1]
color := uint8(s.Alpha >> 8)
for i := range p {
p[i] = color
}
}
}
// NewAlphaSrcPainter creates a new AlphaSrcPainter for the given image.
func NewAlphaSrcPainter(m *image.Alpha) AlphaSrcPainter {
return AlphaSrcPainter{m}
}
// An RGBAPainter is a Painter that paints Spans onto a *image.RGBA.
type RGBAPainter struct {
// Image is the image to compose onto.
Image *image.RGBA
// Op is the Porter-Duff composition operator.
Op draw.Op
// cr, cg, cb and ca are the 16-bit color to paint the spans.
cr, cg, cb, ca uint32
}
// Paint satisfies the Painter interface.
func (r *RGBAPainter) Paint(ss []Span, done bool) {
b := r.Image.Bounds()
for _, s := range ss {
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
// This code mimics drawGlyphOver in $GOROOT/src/image/draw/draw.go.
ma := s.Alpha
const m = 1<<16 - 1
i0 := (s.Y-r.Image.Rect.Min.Y)*r.Image.Stride + (s.X0-r.Image.Rect.Min.X)*4
i1 := i0 + (s.X1-s.X0)*4
if r.Op == draw.Over {
for i := i0; i < i1; i += 4 {
dr := uint32(r.Image.Pix[i+0])
dg := uint32(r.Image.Pix[i+1])
db := uint32(r.Image.Pix[i+2])
da := uint32(r.Image.Pix[i+3])
a := (m - (r.ca * ma / m)) * 0x101
r.Image.Pix[i+0] = uint8((dr*a + r.cr*ma) / m >> 8)
r.Image.Pix[i+1] = uint8((dg*a + r.cg*ma) / m >> 8)
r.Image.Pix[i+2] = uint8((db*a + r.cb*ma) / m >> 8)
r.Image.Pix[i+3] = uint8((da*a + r.ca*ma) / m >> 8)
}
} else {
for i := i0; i < i1; i += 4 {
r.Image.Pix[i+0] = uint8(r.cr * ma / m >> 8)
r.Image.Pix[i+1] = uint8(r.cg * ma / m >> 8)
r.Image.Pix[i+2] = uint8(r.cb * ma / m >> 8)
r.Image.Pix[i+3] = uint8(r.ca * ma / m >> 8)
}
}
}
}
// SetColor sets the color to paint the spans.
func (r *RGBAPainter) SetColor(c color.Color) {
r.cr, r.cg, r.cb, r.ca = c.RGBA()
}
// NewRGBAPainter creates a new RGBAPainter for the given image.
func NewRGBAPainter(m *image.RGBA) *RGBAPainter {
return &RGBAPainter{Image: m}
}
// A MonochromePainter wraps another Painter, quantizing each Span's alpha to
// be either fully opaque or fully transparent.
type MonochromePainter struct {
Painter Painter
y, x0, x1 int
}
// Paint delegates to the wrapped Painter after quantizing each Span's alpha
// value and merging adjacent fully opaque Spans.
func (m *MonochromePainter) Paint(ss []Span, done bool) {
// We compact the ss slice, discarding any Spans whose alpha quantizes to zero.
j := 0
for _, s := range ss {
if s.Alpha >= 0x8000 {
if m.y == s.Y && m.x1 == s.X0 {
m.x1 = s.X1
} else {
ss[j] = Span{m.y, m.x0, m.x1, 1<<16 - 1}
j++
m.y, m.x0, m.x1 = s.Y, s.X0, s.X1
}
}
}
if done {
// Flush the accumulated Span.
finalSpan := Span{m.y, m.x0, m.x1, 1<<16 - 1}
if j < len(ss) {
ss[j] = finalSpan
j++
m.Painter.Paint(ss[:j], true)
} else if j == len(ss) {
m.Painter.Paint(ss, false)
if cap(ss) > 0 {
ss = ss[:1]
} else {
ss = make([]Span, 1)
}
ss[0] = finalSpan
m.Painter.Paint(ss, true)
} else {
panic("unreachable")
}
// Reset the accumulator, so that this Painter can be re-used.
m.y, m.x0, m.x1 = 0, 0, 0
} else {
m.Painter.Paint(ss[:j], false)
}
}
// NewMonochromePainter creates a new MonochromePainter that wraps the given
// Painter.
func NewMonochromePainter(p Painter) *MonochromePainter {
return &MonochromePainter{Painter: p}
}
// A GammaCorrectionPainter wraps another Painter, performing gamma-correction
// on each Span's alpha value.
type GammaCorrectionPainter struct {
// Painter is the wrapped Painter.
Painter Painter
// a is the precomputed alpha values for linear interpolation, with fully
// opaque == 0xffff.
a [256]uint16
// gammaIsOne is whether gamma correction is a no-op.
gammaIsOne bool
}
// Paint delegates to the wrapped Painter after performing gamma-correction on
// each Span.
func (g *GammaCorrectionPainter) Paint(ss []Span, done bool) {
if !g.gammaIsOne {
const n = 0x101
for i, s := range ss {
if s.Alpha == 0 || s.Alpha == 0xffff {
continue
}
p, q := s.Alpha/n, s.Alpha%n
// The resultant alpha is a linear interpolation of g.a[p] and g.a[p+1].
a := uint32(g.a[p])*(n-q) + uint32(g.a[p+1])*q
ss[i].Alpha = (a + n/2) / n
}
}
g.Painter.Paint(ss, done)
}
// SetGamma sets the gamma value.
func (g *GammaCorrectionPainter) SetGamma(gamma float64) {
g.gammaIsOne = gamma == 1
if g.gammaIsOne {
return
}
for i := 0; i < 256; i++ {
a := float64(i) / 0xff
a = math.Pow(a, gamma)
g.a[i] = uint16(0xffff * a)
}
}
// NewGammaCorrectionPainter creates a new GammaCorrectionPainter that wraps
// the given Painter.
func NewGammaCorrectionPainter(p Painter, gamma float64) *GammaCorrectionPainter {
g := &GammaCorrectionPainter{Painter: p}
g.SetGamma(gamma)
return g
}

601
vendor/github.com/golang/freetype/raster/raster.go generated vendored Normal file
View file

@ -0,0 +1,601 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
// Package raster provides an anti-aliasing 2-D rasterizer.
//
// It is part of the larger Freetype suite of font-related packages, but the
// raster package is not specific to font rasterization, and can be used
// standalone without any other Freetype package.
//
// Rasterization is done by the same area/coverage accumulation algorithm as
// the Freetype "smooth" module, and the Anti-Grain Geometry library. A
// description of the area/coverage algorithm is at
// http://projects.tuxee.net/cl-vectors/section-the-cl-aa-algorithm
package raster
import (
"strconv"
"golang.org/x/image/math/fixed"
)
// A cell is part of a linked list (for a given yi co-ordinate) of accumulated
// area/coverage for the pixel at (xi, yi).
type cell struct {
xi int
area, cover int
next int
}
type Rasterizer struct {
// If false, the default behavior is to use the even-odd winding fill
// rule during Rasterize.
UseNonZeroWinding bool
// An offset (in pixels) to the painted spans.
Dx, Dy int
// The width of the Rasterizer. The height is implicit in len(cellIndex).
width int
// splitScaleN is the scaling factor used to determine how many times
// to decompose a quadratic or cubic segment into a linear approximation.
splitScale2, splitScale3 int
// The current pen position.
a fixed.Point26_6
// The current cell and its area/coverage being accumulated.
xi, yi int
area, cover int
// Saved cells.
cell []cell
// Linked list of cells, one per row.
cellIndex []int
// Buffers.
cellBuf [256]cell
cellIndexBuf [64]int
spanBuf [64]Span
}
// findCell returns the index in r.cell for the cell corresponding to
// (r.xi, r.yi). The cell is created if necessary.
func (r *Rasterizer) findCell() int {
if r.yi < 0 || r.yi >= len(r.cellIndex) {
return -1
}
xi := r.xi
if xi < 0 {
xi = -1
} else if xi > r.width {
xi = r.width
}
i, prev := r.cellIndex[r.yi], -1
for i != -1 && r.cell[i].xi <= xi {
if r.cell[i].xi == xi {
return i
}
i, prev = r.cell[i].next, i
}
c := len(r.cell)
if c == cap(r.cell) {
buf := make([]cell, c, 4*c)
copy(buf, r.cell)
r.cell = buf[0 : c+1]
} else {
r.cell = r.cell[0 : c+1]
}
r.cell[c] = cell{xi, 0, 0, i}
if prev == -1 {
r.cellIndex[r.yi] = c
} else {
r.cell[prev].next = c
}
return c
}
// saveCell saves any accumulated r.area/r.cover for (r.xi, r.yi).
func (r *Rasterizer) saveCell() {
if r.area != 0 || r.cover != 0 {
i := r.findCell()
if i != -1 {
r.cell[i].area += r.area
r.cell[i].cover += r.cover
}
r.area = 0
r.cover = 0
}
}
// setCell sets the (xi, yi) cell that r is accumulating area/coverage for.
func (r *Rasterizer) setCell(xi, yi int) {
if r.xi != xi || r.yi != yi {
r.saveCell()
r.xi, r.yi = xi, yi
}
}
// scan accumulates area/coverage for the yi'th scanline, going from
// x0 to x1 in the horizontal direction (in 26.6 fixed point co-ordinates)
// and from y0f to y1f fractional vertical units within that scanline.
func (r *Rasterizer) scan(yi int, x0, y0f, x1, y1f fixed.Int26_6) {
// Break the 26.6 fixed point X co-ordinates into integral and fractional parts.
x0i := int(x0) / 64
x0f := x0 - fixed.Int26_6(64*x0i)
x1i := int(x1) / 64
x1f := x1 - fixed.Int26_6(64*x1i)
// A perfectly horizontal scan.
if y0f == y1f {
r.setCell(x1i, yi)
return
}
dx, dy := x1-x0, y1f-y0f
// A single cell scan.
if x0i == x1i {
r.area += int((x0f + x1f) * dy)
r.cover += int(dy)
return
}
// There are at least two cells. Apart from the first and last cells,
// all intermediate cells go through the full width of the cell,
// or 64 units in 26.6 fixed point format.
var (
p, q, edge0, edge1 fixed.Int26_6
xiDelta int
)
if dx > 0 {
p, q = (64-x0f)*dy, dx
edge0, edge1, xiDelta = 0, 64, 1
} else {
p, q = x0f*dy, -dx
edge0, edge1, xiDelta = 64, 0, -1
}
yDelta, yRem := p/q, p%q
if yRem < 0 {
yDelta -= 1
yRem += q
}
// Do the first cell.
xi, y := x0i, y0f
r.area += int((x0f + edge1) * yDelta)
r.cover += int(yDelta)
xi, y = xi+xiDelta, y+yDelta
r.setCell(xi, yi)
if xi != x1i {
// Do all the intermediate cells.
p = 64 * (y1f - y + yDelta)
fullDelta, fullRem := p/q, p%q
if fullRem < 0 {
fullDelta -= 1
fullRem += q
}
yRem -= q
for xi != x1i {
yDelta = fullDelta
yRem += fullRem
if yRem >= 0 {
yDelta += 1
yRem -= q
}
r.area += int(64 * yDelta)
r.cover += int(yDelta)
xi, y = xi+xiDelta, y+yDelta
r.setCell(xi, yi)
}
}
// Do the last cell.
yDelta = y1f - y
r.area += int((edge0 + x1f) * yDelta)
r.cover += int(yDelta)
}
// Start starts a new curve at the given point.
func (r *Rasterizer) Start(a fixed.Point26_6) {
r.setCell(int(a.X/64), int(a.Y/64))
r.a = a
}
// Add1 adds a linear segment to the current curve.
func (r *Rasterizer) Add1(b fixed.Point26_6) {
x0, y0 := r.a.X, r.a.Y
x1, y1 := b.X, b.Y
dx, dy := x1-x0, y1-y0
// Break the 26.6 fixed point Y co-ordinates into integral and fractional
// parts.
y0i := int(y0) / 64
y0f := y0 - fixed.Int26_6(64*y0i)
y1i := int(y1) / 64
y1f := y1 - fixed.Int26_6(64*y1i)
if y0i == y1i {
// There is only one scanline.
r.scan(y0i, x0, y0f, x1, y1f)
} else if dx == 0 {
// This is a vertical line segment. We avoid calling r.scan and instead
// manipulate r.area and r.cover directly.
var (
edge0, edge1 fixed.Int26_6
yiDelta int
)
if dy > 0 {
edge0, edge1, yiDelta = 0, 64, 1
} else {
edge0, edge1, yiDelta = 64, 0, -1
}
x0i, yi := int(x0)/64, y0i
x0fTimes2 := (int(x0) - (64 * x0i)) * 2
// Do the first pixel.
dcover := int(edge1 - y0f)
darea := int(x0fTimes2 * dcover)
r.area += darea
r.cover += dcover
yi += yiDelta
r.setCell(x0i, yi)
// Do all the intermediate pixels.
dcover = int(edge1 - edge0)
darea = int(x0fTimes2 * dcover)
for yi != y1i {
r.area += darea
r.cover += dcover
yi += yiDelta
r.setCell(x0i, yi)
}
// Do the last pixel.
dcover = int(y1f - edge0)
darea = int(x0fTimes2 * dcover)
r.area += darea
r.cover += dcover
} else {
// There are at least two scanlines. Apart from the first and last
// scanlines, all intermediate scanlines go through the full height of
// the row, or 64 units in 26.6 fixed point format.
var (
p, q, edge0, edge1 fixed.Int26_6
yiDelta int
)
if dy > 0 {
p, q = (64-y0f)*dx, dy
edge0, edge1, yiDelta = 0, 64, 1
} else {
p, q = y0f*dx, -dy
edge0, edge1, yiDelta = 64, 0, -1
}
xDelta, xRem := p/q, p%q
if xRem < 0 {
xDelta -= 1
xRem += q
}
// Do the first scanline.
x, yi := x0, y0i
r.scan(yi, x, y0f, x+xDelta, edge1)
x, yi = x+xDelta, yi+yiDelta
r.setCell(int(x)/64, yi)
if yi != y1i {
// Do all the intermediate scanlines.
p = 64 * dx
fullDelta, fullRem := p/q, p%q
if fullRem < 0 {
fullDelta -= 1
fullRem += q
}
xRem -= q
for yi != y1i {
xDelta = fullDelta
xRem += fullRem
if xRem >= 0 {
xDelta += 1
xRem -= q
}
r.scan(yi, x, edge0, x+xDelta, edge1)
x, yi = x+xDelta, yi+yiDelta
r.setCell(int(x)/64, yi)
}
}
// Do the last scanline.
r.scan(yi, x, edge0, x1, y1f)
}
// The next lineTo starts from b.
r.a = b
}
// Add2 adds a quadratic segment to the current curve.
func (r *Rasterizer) Add2(b, c fixed.Point26_6) {
// Calculate nSplit (the number of recursive decompositions) based on how
// 'curvy' it is. Specifically, how much the middle point b deviates from
// (a+c)/2.
dev := maxAbs(r.a.X-2*b.X+c.X, r.a.Y-2*b.Y+c.Y) / fixed.Int26_6(r.splitScale2)
nsplit := 0
for dev > 0 {
dev /= 4
nsplit++
}
// dev is 32-bit, and nsplit++ every time we shift off 2 bits, so maxNsplit
// is 16.
const maxNsplit = 16
if nsplit > maxNsplit {
panic("freetype/raster: Add2 nsplit too large: " + strconv.Itoa(nsplit))
}
// Recursively decompose the curve nSplit levels deep.
var (
pStack [2*maxNsplit + 3]fixed.Point26_6
sStack [maxNsplit + 1]int
i int
)
sStack[0] = nsplit
pStack[0] = c
pStack[1] = b
pStack[2] = r.a
for i >= 0 {
s := sStack[i]
p := pStack[2*i:]
if s > 0 {
// Split the quadratic curve p[:3] into an equivalent set of two
// shorter curves: p[:3] and p[2:5]. The new p[4] is the old p[2],
// and p[0] is unchanged.
mx := p[1].X
p[4].X = p[2].X
p[3].X = (p[4].X + mx) / 2
p[1].X = (p[0].X + mx) / 2
p[2].X = (p[1].X + p[3].X) / 2
my := p[1].Y
p[4].Y = p[2].Y
p[3].Y = (p[4].Y + my) / 2
p[1].Y = (p[0].Y + my) / 2
p[2].Y = (p[1].Y + p[3].Y) / 2
// The two shorter curves have one less split to do.
sStack[i] = s - 1
sStack[i+1] = s - 1
i++
} else {
// Replace the level-0 quadratic with a two-linear-piece
// approximation.
midx := (p[0].X + 2*p[1].X + p[2].X) / 4
midy := (p[0].Y + 2*p[1].Y + p[2].Y) / 4
r.Add1(fixed.Point26_6{midx, midy})
r.Add1(p[0])
i--
}
}
}
// Add3 adds a cubic segment to the current curve.
func (r *Rasterizer) Add3(b, c, d fixed.Point26_6) {
// Calculate nSplit (the number of recursive decompositions) based on how
// 'curvy' it is.
dev2 := maxAbs(r.a.X-3*(b.X+c.X)+d.X, r.a.Y-3*(b.Y+c.Y)+d.Y) / fixed.Int26_6(r.splitScale2)
dev3 := maxAbs(r.a.X-2*b.X+d.X, r.a.Y-2*b.Y+d.Y) / fixed.Int26_6(r.splitScale3)
nsplit := 0
for dev2 > 0 || dev3 > 0 {
dev2 /= 8
dev3 /= 4
nsplit++
}
// devN is 32-bit, and nsplit++ every time we shift off 2 bits, so
// maxNsplit is 16.
const maxNsplit = 16
if nsplit > maxNsplit {
panic("freetype/raster: Add3 nsplit too large: " + strconv.Itoa(nsplit))
}
// Recursively decompose the curve nSplit levels deep.
var (
pStack [3*maxNsplit + 4]fixed.Point26_6
sStack [maxNsplit + 1]int
i int
)
sStack[0] = nsplit
pStack[0] = d
pStack[1] = c
pStack[2] = b
pStack[3] = r.a
for i >= 0 {
s := sStack[i]
p := pStack[3*i:]
if s > 0 {
// Split the cubic curve p[:4] into an equivalent set of two
// shorter curves: p[:4] and p[3:7]. The new p[6] is the old p[3],
// and p[0] is unchanged.
m01x := (p[0].X + p[1].X) / 2
m12x := (p[1].X + p[2].X) / 2
m23x := (p[2].X + p[3].X) / 2
p[6].X = p[3].X
p[5].X = m23x
p[1].X = m01x
p[2].X = (m01x + m12x) / 2
p[4].X = (m12x + m23x) / 2
p[3].X = (p[2].X + p[4].X) / 2
m01y := (p[0].Y + p[1].Y) / 2
m12y := (p[1].Y + p[2].Y) / 2
m23y := (p[2].Y + p[3].Y) / 2
p[6].Y = p[3].Y
p[5].Y = m23y
p[1].Y = m01y
p[2].Y = (m01y + m12y) / 2
p[4].Y = (m12y + m23y) / 2
p[3].Y = (p[2].Y + p[4].Y) / 2
// The two shorter curves have one less split to do.
sStack[i] = s - 1
sStack[i+1] = s - 1
i++
} else {
// Replace the level-0 cubic with a two-linear-piece approximation.
midx := (p[0].X + 3*(p[1].X+p[2].X) + p[3].X) / 8
midy := (p[0].Y + 3*(p[1].Y+p[2].Y) + p[3].Y) / 8
r.Add1(fixed.Point26_6{midx, midy})
r.Add1(p[0])
i--
}
}
}
// AddPath adds the given Path.
func (r *Rasterizer) AddPath(p Path) {
for i := 0; i < len(p); {
switch p[i] {
case 0:
r.Start(
fixed.Point26_6{p[i+1], p[i+2]},
)
i += 4
case 1:
r.Add1(
fixed.Point26_6{p[i+1], p[i+2]},
)
i += 4
case 2:
r.Add2(
fixed.Point26_6{p[i+1], p[i+2]},
fixed.Point26_6{p[i+3], p[i+4]},
)
i += 6
case 3:
r.Add3(
fixed.Point26_6{p[i+1], p[i+2]},
fixed.Point26_6{p[i+3], p[i+4]},
fixed.Point26_6{p[i+5], p[i+6]},
)
i += 8
default:
panic("freetype/raster: bad path")
}
}
}
// AddStroke adds a stroked Path.
func (r *Rasterizer) AddStroke(q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
Stroke(r, q, width, cr, jr)
}
// areaToAlpha converts an area value to a uint32 alpha value. A completely
// filled pixel corresponds to an area of 64*64*2, and an alpha of 0xffff. The
// conversion of area values greater than this depends on the winding rule:
// even-odd or non-zero.
func (r *Rasterizer) areaToAlpha(area int) uint32 {
// The C Freetype implementation (version 2.3.12) does "alpha := area>>1"
// without the +1. Round-to-nearest gives a more symmetric result than
// round-down. The C implementation also returns 8-bit alpha, not 16-bit
// alpha.
a := (area + 1) >> 1
if a < 0 {
a = -a
}
alpha := uint32(a)
if r.UseNonZeroWinding {
if alpha > 0x0fff {
alpha = 0x0fff
}
} else {
alpha &= 0x1fff
if alpha > 0x1000 {
alpha = 0x2000 - alpha
} else if alpha == 0x1000 {
alpha = 0x0fff
}
}
// alpha is now in the range [0x0000, 0x0fff]. Convert that 12-bit alpha to
// 16-bit alpha.
return alpha<<4 | alpha>>8
}
// Rasterize converts r's accumulated curves into Spans for p. The Spans passed
// to p are non-overlapping, and sorted by Y and then X. They all have non-zero
// width (and 0 <= X0 < X1 <= r.width) and non-zero A, except for the final
// Span, which has Y, X0, X1 and A all equal to zero.
func (r *Rasterizer) Rasterize(p Painter) {
r.saveCell()
s := 0
for yi := 0; yi < len(r.cellIndex); yi++ {
xi, cover := 0, 0
for c := r.cellIndex[yi]; c != -1; c = r.cell[c].next {
if cover != 0 && r.cell[c].xi > xi {
alpha := r.areaToAlpha(cover * 64 * 2)
if alpha != 0 {
xi0, xi1 := xi, r.cell[c].xi
if xi0 < 0 {
xi0 = 0
}
if xi1 >= r.width {
xi1 = r.width
}
if xi0 < xi1 {
r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
s++
}
}
}
cover += r.cell[c].cover
alpha := r.areaToAlpha(cover*64*2 - r.cell[c].area)
xi = r.cell[c].xi + 1
if alpha != 0 {
xi0, xi1 := r.cell[c].xi, xi
if xi0 < 0 {
xi0 = 0
}
if xi1 >= r.width {
xi1 = r.width
}
if xi0 < xi1 {
r.spanBuf[s] = Span{yi + r.Dy, xi0 + r.Dx, xi1 + r.Dx, alpha}
s++
}
}
if s > len(r.spanBuf)-2 {
p.Paint(r.spanBuf[:s], false)
s = 0
}
}
}
p.Paint(r.spanBuf[:s], true)
}
// Clear cancels any previous calls to r.Start or r.AddXxx.
func (r *Rasterizer) Clear() {
r.a = fixed.Point26_6{}
r.xi = 0
r.yi = 0
r.area = 0
r.cover = 0
r.cell = r.cell[:0]
for i := 0; i < len(r.cellIndex); i++ {
r.cellIndex[i] = -1
}
}
// SetBounds sets the maximum width and height of the rasterized image and
// calls Clear. The width and height are in pixels, not fixed.Int26_6 units.
func (r *Rasterizer) SetBounds(width, height int) {
if width < 0 {
width = 0
}
if height < 0 {
height = 0
}
// Use the same ssN heuristic as the C Freetype (version 2.4.0)
// implementation.
ss2, ss3 := 32, 16
if width > 24 || height > 24 {
ss2, ss3 = 2*ss2, 2*ss3
if width > 120 || height > 120 {
ss2, ss3 = 2*ss2, 2*ss3
}
}
r.width = width
r.splitScale2 = ss2
r.splitScale3 = ss3
r.cell = r.cellBuf[:0]
if height > len(r.cellIndexBuf) {
r.cellIndex = make([]int, height)
} else {
r.cellIndex = r.cellIndexBuf[:height]
}
r.Clear()
}
// NewRasterizer creates a new Rasterizer with the given bounds.
func NewRasterizer(width, height int) *Rasterizer {
r := new(Rasterizer)
r.SetBounds(width, height)
return r
}

483
vendor/github.com/golang/freetype/raster/stroke.go generated vendored Normal file
View file

@ -0,0 +1,483 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package raster
import (
"golang.org/x/image/math/fixed"
)
// Two points are considered practically equal if the square of the distance
// between them is less than one quarter (i.e. 1024 / 4096).
const epsilon = fixed.Int52_12(1024)
// A Capper signifies how to begin or end a stroked path.
type Capper interface {
// Cap adds a cap to p given a pivot point and the normal vector of a
// terminal segment. The normal's length is half of the stroke width.
Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6)
}
// The CapperFunc type adapts an ordinary function to be a Capper.
type CapperFunc func(Adder, fixed.Int26_6, fixed.Point26_6, fixed.Point26_6)
func (f CapperFunc) Cap(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
f(p, halfWidth, pivot, n1)
}
// A Joiner signifies how to join interior nodes of a stroked path.
type Joiner interface {
// Join adds a join to the two sides of a stroked path given a pivot
// point and the normal vectors of the trailing and leading segments.
// Both normals have length equal to half of the stroke width.
Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
}
// The JoinerFunc type adapts an ordinary function to be a Joiner.
type JoinerFunc func(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6)
func (f JoinerFunc) Join(lhs, rhs Adder, halfWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
f(lhs, rhs, halfWidth, pivot, n0, n1)
}
// RoundCapper adds round caps to a stroked path.
var RoundCapper Capper = CapperFunc(roundCapper)
func roundCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
// The cubic Bézier approximation to a circle involves the magic number
// (√2 - 1) * 4/3, which is approximately 35/64.
const k = 35
e := pRot90CCW(n1)
side := pivot.Add(e)
start, end := pivot.Sub(n1), pivot.Add(n1)
d, e := n1.Mul(k), e.Mul(k)
p.Add3(start.Add(e), side.Sub(d), side)
p.Add3(side.Add(d), end.Add(e), end)
}
// ButtCapper adds butt caps to a stroked path.
var ButtCapper Capper = CapperFunc(buttCapper)
func buttCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
p.Add1(pivot.Add(n1))
}
// SquareCapper adds square caps to a stroked path.
var SquareCapper Capper = CapperFunc(squareCapper)
func squareCapper(p Adder, halfWidth fixed.Int26_6, pivot, n1 fixed.Point26_6) {
e := pRot90CCW(n1)
side := pivot.Add(e)
p.Add1(side.Sub(n1))
p.Add1(side.Add(n1))
p.Add1(pivot.Add(n1))
}
// RoundJoiner adds round joins to a stroked path.
var RoundJoiner Joiner = JoinerFunc(roundJoiner)
func roundJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
dot := pDot(pRot90CW(n0), n1)
if dot >= 0 {
addArc(lhs, pivot, n0, n1)
rhs.Add1(pivot.Sub(n1))
} else {
lhs.Add1(pivot.Add(n1))
addArc(rhs, pivot, pNeg(n0), pNeg(n1))
}
}
// BevelJoiner adds bevel joins to a stroked path.
var BevelJoiner Joiner = JoinerFunc(bevelJoiner)
func bevelJoiner(lhs, rhs Adder, haflWidth fixed.Int26_6, pivot, n0, n1 fixed.Point26_6) {
lhs.Add1(pivot.Add(n1))
rhs.Add1(pivot.Sub(n1))
}
// addArc adds a circular arc from pivot+n0 to pivot+n1 to p. The shorter of
// the two possible arcs is taken, i.e. the one spanning <= 180 degrees. The
// two vectors n0 and n1 must be of equal length.
func addArc(p Adder, pivot, n0, n1 fixed.Point26_6) {
// r2 is the square of the length of n0.
r2 := pDot(n0, n0)
if r2 < epsilon {
// The arc radius is so small that we collapse to a straight line.
p.Add1(pivot.Add(n1))
return
}
// We approximate the arc by 0, 1, 2 or 3 45-degree quadratic segments plus
// a final quadratic segment from s to n1. Each 45-degree segment has
// control points {1, 0}, {1, tan(π/8)} and {1/√2, 1/√2} suitably scaled,
// rotated and translated. tan(π/8) is approximately 27/64.
const tpo8 = 27
var s fixed.Point26_6
// We determine which octant the angle between n0 and n1 is in via three
// dot products. m0, m1 and m2 are n0 rotated clockwise by 45, 90 and 135
// degrees.
m0 := pRot45CW(n0)
m1 := pRot90CW(n0)
m2 := pRot90CW(m0)
if pDot(m1, n1) >= 0 {
if pDot(n0, n1) >= 0 {
if pDot(m2, n1) <= 0 {
// n1 is between 0 and 45 degrees clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees clockwise of n0.
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
s = m0
}
} else {
pm1, n0t := pivot.Add(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Add(m1.Mul(tpo8)), pivot.Add(m0))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m0, n1) >= 0 {
// n1 is between 90 and 135 degrees clockwise of n0.
s = m1
} else {
// n1 is between 135 and 180 degrees clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Add(m2))
s = m2
}
}
} else {
if pDot(n0, n1) >= 0 {
if pDot(m0, n1) >= 0 {
// n1 is between 0 and 45 degrees counter-clockwise of n0.
s = n0
} else {
// n1 is between 45 and 90 degrees counter-clockwise of n0.
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
s = pNeg(m2)
}
} else {
pm1, n0t := pivot.Sub(m1), n0.Mul(tpo8)
p.Add2(pivot.Add(n0).Sub(m1.Mul(tpo8)), pivot.Sub(m2))
p.Add2(pm1.Add(n0t), pm1)
if pDot(m2, n1) <= 0 {
// n1 is between 90 and 135 degrees counter-clockwise of n0.
s = pNeg(m1)
} else {
// n1 is between 135 and 180 degrees counter-clockwise of n0.
p.Add2(pm1.Sub(n0t), pivot.Sub(m0))
s = pNeg(m0)
}
}
}
// The final quadratic segment has two endpoints s and n1 and the middle
// control point is a multiple of s.Add(n1), i.e. it is on the angle
// bisector of those two points. The multiple ranges between 128/256 and
// 150/256 as the angle between s and n1 ranges between 0 and 45 degrees.
//
// When the angle is 0 degrees (i.e. s and n1 are coincident) then
// s.Add(n1) is twice s and so the middle control point of the degenerate
// quadratic segment should be half s.Add(n1), and half = 128/256.
//
// When the angle is 45 degrees then 150/256 is the ratio of the lengths of
// the two vectors {1, tan(π/8)} and {1 + 1/√2, 1/√2}.
//
// d is the normalized dot product between s and n1. Since the angle ranges
// between 0 and 45 degrees then d ranges between 256/256 and 181/256.
d := 256 * pDot(s, n1) / r2
multiple := fixed.Int26_6(150-(150-128)*(d-181)/(256-181)) >> 2
p.Add2(pivot.Add(s.Add(n1).Mul(multiple)), pivot.Add(n1))
}
// midpoint returns the midpoint of two Points.
func midpoint(a, b fixed.Point26_6) fixed.Point26_6 {
return fixed.Point26_6{(a.X + b.X) / 2, (a.Y + b.Y) / 2}
}
// angleGreaterThan45 returns whether the angle between two vectors is more
// than 45 degrees.
func angleGreaterThan45(v0, v1 fixed.Point26_6) bool {
v := pRot45CCW(v0)
return pDot(v, v1) < 0 || pDot(pRot90CW(v), v1) < 0
}
// interpolate returns the point (1-t)*a + t*b.
func interpolate(a, b fixed.Point26_6, t fixed.Int52_12) fixed.Point26_6 {
s := 1<<12 - t
x := s*fixed.Int52_12(a.X) + t*fixed.Int52_12(b.X)
y := s*fixed.Int52_12(a.Y) + t*fixed.Int52_12(b.Y)
return fixed.Point26_6{fixed.Int26_6(x >> 12), fixed.Int26_6(y >> 12)}
}
// curviest2 returns the value of t for which the quadratic parametric curve
// (1-t)²*a + 2*t*(1-t).b + t²*c has maximum curvature.
//
// The curvature of the parametric curve f(t) = (x(t), y(t)) is
// |xy″-yx″| / (x²+y²)^(3/2).
//
// Let d = b-a and e = c-2*b+a, so that f(t) = 2*d+2*e*t and f″(t) = 2*e.
// The curvature's numerator is (2*dx+2*ex*t)*(2*ey)-(2*dy+2*ey*t)*(2*ex),
// which simplifies to 4*dx*ey-4*dy*ex, which is constant with respect to t.
//
// Thus, curvature is extreme where the denominator is extreme, i.e. where
// (x²+y²) is extreme. The first order condition is that
// 2*x*x″+2*y*y″ = 0, or (dx+ex*t)*ex + (dy+ey*t)*ey = 0.
// Solving for t gives t = -(dx*ex+dy*ey) / (ex*ex+ey*ey).
func curviest2(a, b, c fixed.Point26_6) fixed.Int52_12 {
dx := int64(b.X - a.X)
dy := int64(b.Y - a.Y)
ex := int64(c.X - 2*b.X + a.X)
ey := int64(c.Y - 2*b.Y + a.Y)
if ex == 0 && ey == 0 {
return 2048
}
return fixed.Int52_12(-4096 * (dx*ex + dy*ey) / (ex*ex + ey*ey))
}
// A stroker holds state for stroking a path.
type stroker struct {
// p is the destination that records the stroked path.
p Adder
// u is the half-width of the stroke.
u fixed.Int26_6
// cr and jr specify how to end and connect path segments.
cr Capper
jr Joiner
// r is the reverse path. Stroking a path involves constructing two
// parallel paths 2*u apart. The first path is added immediately to p,
// the second path is accumulated in r and eventually added in reverse.
r Path
// a is the most recent segment point. anorm is the segment normal of
// length u at that point.
a, anorm fixed.Point26_6
}
// addNonCurvy2 adds a quadratic segment to the stroker, where the segment
// defined by (k.a, b, c) achieves maximum curvature at either k.a or c.
func (k *stroker) addNonCurvy2(b, c fixed.Point26_6) {
// We repeatedly divide the segment at its middle until it is straight
// enough to approximate the stroke by just translating the control points.
// ds and ps are stacks of depths and points. t is the top of the stack.
const maxDepth = 5
var (
ds [maxDepth + 1]int
ps [2*maxDepth + 3]fixed.Point26_6
t int
)
// Initially the ps stack has one quadratic segment of depth zero.
ds[0] = 0
ps[2] = k.a
ps[1] = b
ps[0] = c
anorm := k.anorm
var cnorm fixed.Point26_6
for {
depth := ds[t]
a := ps[2*t+2]
b := ps[2*t+1]
c := ps[2*t+0]
ab := b.Sub(a)
bc := c.Sub(b)
abIsSmall := pDot(ab, ab) < fixed.Int52_12(1<<12)
bcIsSmall := pDot(bc, bc) < fixed.Int52_12(1<<12)
if abIsSmall && bcIsSmall {
// Approximate the segment by a circular arc.
cnorm = pRot90CCW(pNorm(bc, k.u))
mac := midpoint(a, c)
addArc(k.p, mac, anorm, cnorm)
addArc(&k.r, mac, pNeg(anorm), pNeg(cnorm))
} else if depth < maxDepth && angleGreaterThan45(ab, bc) {
// Divide the segment in two and push both halves on the stack.
mab := midpoint(a, b)
mbc := midpoint(b, c)
t++
ds[t+0] = depth + 1
ds[t-1] = depth + 1
ps[2*t+2] = a
ps[2*t+1] = mab
ps[2*t+0] = midpoint(mab, mbc)
ps[2*t-1] = mbc
continue
} else {
// Translate the control points.
bnorm := pRot90CCW(pNorm(c.Sub(a), k.u))
cnorm = pRot90CCW(pNorm(bc, k.u))
k.p.Add2(b.Add(bnorm), c.Add(cnorm))
k.r.Add2(b.Sub(bnorm), c.Sub(cnorm))
}
if t == 0 {
k.a, k.anorm = c, cnorm
return
}
t--
anorm = cnorm
}
panic("unreachable")
}
// Add1 adds a linear segment to the stroker.
func (k *stroker) Add1(b fixed.Point26_6) {
bnorm := pRot90CCW(pNorm(b.Sub(k.a), k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(bnorm))
k.r.Start(k.a.Sub(bnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, bnorm)
}
k.p.Add1(b.Add(bnorm))
k.r.Add1(b.Sub(bnorm))
k.a, k.anorm = b, bnorm
}
// Add2 adds a quadratic segment to the stroker.
func (k *stroker) Add2(b, c fixed.Point26_6) {
ab := b.Sub(k.a)
bc := c.Sub(b)
abnorm := pRot90CCW(pNorm(ab, k.u))
if len(k.r) == 0 {
k.p.Start(k.a.Add(abnorm))
k.r.Start(k.a.Sub(abnorm))
} else {
k.jr.Join(k.p, &k.r, k.u, k.a, k.anorm, abnorm)
}
// Approximate nearly-degenerate quadratics by linear segments.
abIsSmall := pDot(ab, ab) < epsilon
bcIsSmall := pDot(bc, bc) < epsilon
if abIsSmall || bcIsSmall {
acnorm := pRot90CCW(pNorm(c.Sub(k.a), k.u))
k.p.Add1(c.Add(acnorm))
k.r.Add1(c.Sub(acnorm))
k.a, k.anorm = c, acnorm
return
}
// The quadratic segment (k.a, b, c) has a point of maximum curvature.
// If this occurs at an end point, we process the segment as a whole.
t := curviest2(k.a, b, c)
if t <= 0 || 4096 <= t {
k.addNonCurvy2(b, c)
return
}
// Otherwise, we perform a de Casteljau decomposition at the point of
// maximum curvature and process the two straighter parts.
mab := interpolate(k.a, b, t)
mbc := interpolate(b, c, t)
mabc := interpolate(mab, mbc, t)
// If the vectors ab and bc are close to being in opposite directions,
// then the decomposition can become unstable, so we approximate the
// quadratic segment by two linear segments joined by an arc.
bcnorm := pRot90CCW(pNorm(bc, k.u))
if pDot(abnorm, bcnorm) < -fixed.Int52_12(k.u)*fixed.Int52_12(k.u)*2047/2048 {
pArc := pDot(abnorm, bc) < 0
k.p.Add1(mabc.Add(abnorm))
if pArc {
z := pRot90CW(abnorm)
addArc(k.p, mabc, abnorm, z)
addArc(k.p, mabc, z, bcnorm)
}
k.p.Add1(mabc.Add(bcnorm))
k.p.Add1(c.Add(bcnorm))
k.r.Add1(mabc.Sub(abnorm))
if !pArc {
z := pRot90CW(abnorm)
addArc(&k.r, mabc, pNeg(abnorm), z)
addArc(&k.r, mabc, z, pNeg(bcnorm))
}
k.r.Add1(mabc.Sub(bcnorm))
k.r.Add1(c.Sub(bcnorm))
k.a, k.anorm = c, bcnorm
return
}
// Process the decomposed parts.
k.addNonCurvy2(mab, mabc)
k.addNonCurvy2(mbc, c)
}
// Add3 adds a cubic segment to the stroker.
func (k *stroker) Add3(b, c, d fixed.Point26_6) {
panic("freetype/raster: stroke unimplemented for cubic segments")
}
// stroke adds the stroked Path q to p, where q consists of exactly one curve.
func (k *stroker) stroke(q Path) {
// Stroking is implemented by deriving two paths each k.u apart from q.
// The left-hand-side path is added immediately to k.p; the right-hand-side
// path is accumulated in k.r. Once we've finished adding the LHS to k.p,
// we add the RHS in reverse order.
k.r = make(Path, 0, len(q))
k.a = fixed.Point26_6{q[1], q[2]}
for i := 4; i < len(q); {
switch q[i] {
case 1:
k.Add1(
fixed.Point26_6{q[i+1], q[i+2]},
)
i += 4
case 2:
k.Add2(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
)
i += 6
case 3:
k.Add3(
fixed.Point26_6{q[i+1], q[i+2]},
fixed.Point26_6{q[i+3], q[i+4]},
fixed.Point26_6{q[i+5], q[i+6]},
)
i += 8
default:
panic("freetype/raster: bad path")
}
}
if len(k.r) == 0 {
return
}
// TODO(nigeltao): if q is a closed curve then we should join the first and
// last segments instead of capping them.
k.cr.Cap(k.p, k.u, q.lastPoint(), pNeg(k.anorm))
addPathReversed(k.p, k.r)
pivot := q.firstPoint()
k.cr.Cap(k.p, k.u, pivot, pivot.Sub(fixed.Point26_6{k.r[1], k.r[2]}))
}
// Stroke adds q stroked with the given width to p. The result is typically
// self-intersecting and should be rasterized with UseNonZeroWinding.
// cr and jr may be nil, which defaults to a RoundCapper or RoundJoiner.
func Stroke(p Adder, q Path, width fixed.Int26_6, cr Capper, jr Joiner) {
if len(q) == 0 {
return
}
if cr == nil {
cr = RoundCapper
}
if jr == nil {
jr = RoundJoiner
}
if q[0] != 0 {
panic("freetype/raster: bad path")
}
s := stroker{p: p, u: width / 2, cr: cr, jr: jr}
i := 0
for j := 4; j < len(q); {
switch q[j] {
case 0:
s.stroke(q[i:j])
i, j = j, j+4
case 1:
j += 4
case 2:
j += 6
case 3:
j += 8
default:
panic("freetype/raster: bad path")
}
}
s.stroke(q[i:])
}

507
vendor/github.com/golang/freetype/truetype/face.go generated vendored Normal file
View file

@ -0,0 +1,507 @@
// Copyright 2015 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
import (
"image"
"math"
"github.com/golang/freetype/raster"
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
func powerOf2(i int) bool {
return i != 0 && (i&(i-1)) == 0
}
// Options are optional arguments to NewFace.
type Options struct {
// Size is the font size in points, as in "a 10 point font size".
//
// A zero value means to use a 12 point font size.
Size float64
// DPI is the dots-per-inch resolution.
//
// A zero value means to use 72 DPI.
DPI float64
// Hinting is how to quantize the glyph nodes.
//
// A zero value means to use no hinting.
Hinting font.Hinting
// GlyphCacheEntries is the number of entries in the glyph mask image
// cache.
//
// If non-zero, it must be a power of 2.
//
// A zero value means to use 512 entries.
GlyphCacheEntries int
// SubPixelsX is the number of sub-pixel locations a glyph's dot is
// quantized to, in the horizontal direction. For example, a value of 8
// means that the dot is quantized to 1/8th of a pixel. This quantization
// only affects the glyph mask image, not its bounding box or advance
// width. A higher value gives a more faithful glyph image, but reduces the
// effectiveness of the glyph cache.
//
// If non-zero, it must be a power of 2, and be between 1 and 64 inclusive.
//
// A zero value means to use 4 sub-pixel locations.
SubPixelsX int
// SubPixelsY is the number of sub-pixel locations a glyph's dot is
// quantized to, in the vertical direction. For example, a value of 8
// means that the dot is quantized to 1/8th of a pixel. This quantization
// only affects the glyph mask image, not its bounding box or advance
// width. A higher value gives a more faithful glyph image, but reduces the
// effectiveness of the glyph cache.
//
// If non-zero, it must be a power of 2, and be between 1 and 64 inclusive.
//
// A zero value means to use 1 sub-pixel location.
SubPixelsY int
}
func (o *Options) size() float64 {
if o != nil && o.Size > 0 {
return o.Size
}
return 12
}
func (o *Options) dpi() float64 {
if o != nil && o.DPI > 0 {
return o.DPI
}
return 72
}
func (o *Options) hinting() font.Hinting {
if o != nil {
switch o.Hinting {
case font.HintingVertical, font.HintingFull:
// TODO: support vertical hinting.
return font.HintingFull
}
}
return font.HintingNone
}
func (o *Options) glyphCacheEntries() int {
if o != nil && powerOf2(o.GlyphCacheEntries) {
return o.GlyphCacheEntries
}
// 512 is 128 * 4 * 1, which lets us cache 128 glyphs at 4 * 1 subpixel
// locations in the X and Y direction.
return 512
}
func (o *Options) subPixelsX() (value uint32, halfQuantum, mask fixed.Int26_6) {
if o != nil {
switch o.SubPixelsX {
case 1, 2, 4, 8, 16, 32, 64:
return subPixels(o.SubPixelsX)
}
}
// This default value of 4 isn't based on anything scientific, merely as
// small a number as possible that looks almost as good as no quantization,
// or returning subPixels(64).
return subPixels(4)
}
func (o *Options) subPixelsY() (value uint32, halfQuantum, mask fixed.Int26_6) {
if o != nil {
switch o.SubPixelsX {
case 1, 2, 4, 8, 16, 32, 64:
return subPixels(o.SubPixelsX)
}
}
// This default value of 1 isn't based on anything scientific, merely that
// vertical sub-pixel glyph rendering is pretty rare. Baseline locations
// can usually afford to snap to the pixel grid, so the vertical direction
// doesn't have the deal with the horizontal's fractional advance widths.
return subPixels(1)
}
// subPixels returns q and the bias and mask that leads to q quantized
// sub-pixel locations per full pixel.
//
// For example, q == 4 leads to a bias of 8 and a mask of 0xfffffff0, or -16,
// because we want to round fractions of fixed.Int26_6 as:
// - 0 to 7 rounds to 0.
// - 8 to 23 rounds to 16.
// - 24 to 39 rounds to 32.
// - 40 to 55 rounds to 48.
// - 56 to 63 rounds to 64.
// which means to add 8 and then bitwise-and with -16, in two's complement
// representation.
//
// When q == 1, we want bias == 32 and mask == -64.
// When q == 2, we want bias == 16 and mask == -32.
// When q == 4, we want bias == 8 and mask == -16.
// ...
// When q == 64, we want bias == 0 and mask == -1. (The no-op case).
// The pattern is clear.
func subPixels(q int) (value uint32, bias, mask fixed.Int26_6) {
return uint32(q), 32 / fixed.Int26_6(q), -64 / fixed.Int26_6(q)
}
// glyphCacheEntry caches the arguments and return values of rasterize.
type glyphCacheEntry struct {
key glyphCacheKey
val glyphCacheVal
}
type glyphCacheKey struct {
index Index
fx, fy uint8
}
type glyphCacheVal struct {
advanceWidth fixed.Int26_6
offset image.Point
gw int
gh int
}
type indexCacheEntry struct {
rune rune
index Index
}
// NewFace returns a new font.Face for the given Font.
func NewFace(f *Font, opts *Options) font.Face {
a := &face{
f: f,
hinting: opts.hinting(),
scale: fixed.Int26_6(0.5 + (opts.size() * opts.dpi() * 64 / 72)),
glyphCache: make([]glyphCacheEntry, opts.glyphCacheEntries()),
}
a.subPixelX, a.subPixelBiasX, a.subPixelMaskX = opts.subPixelsX()
a.subPixelY, a.subPixelBiasY, a.subPixelMaskY = opts.subPixelsY()
// Fill the cache with invalid entries. Valid glyph cache entries have fx
// and fy in the range [0, 64). Valid index cache entries have rune >= 0.
for i := range a.glyphCache {
a.glyphCache[i].key.fy = 0xff
}
for i := range a.indexCache {
a.indexCache[i].rune = -1
}
// Set the rasterizer's bounds to be big enough to handle the largest glyph.
b := f.Bounds(a.scale)
xmin := +int(b.Min.X) >> 6
ymin := -int(b.Max.Y) >> 6
xmax := +int(b.Max.X+63) >> 6
ymax := -int(b.Min.Y-63) >> 6
a.maxw = xmax - xmin
a.maxh = ymax - ymin
a.masks = image.NewAlpha(image.Rect(0, 0, a.maxw, a.maxh*len(a.glyphCache)))
a.r.SetBounds(a.maxw, a.maxh)
a.p = facePainter{a}
return a
}
type face struct {
f *Font
hinting font.Hinting
scale fixed.Int26_6
subPixelX uint32
subPixelBiasX fixed.Int26_6
subPixelMaskX fixed.Int26_6
subPixelY uint32
subPixelBiasY fixed.Int26_6
subPixelMaskY fixed.Int26_6
masks *image.Alpha
glyphCache []glyphCacheEntry
r raster.Rasterizer
p raster.Painter
paintOffset int
maxw int
maxh int
glyphBuf GlyphBuf
indexCache [indexCacheLen]indexCacheEntry
// TODO: clip rectangle?
}
const indexCacheLen = 256
func (a *face) index(r rune) Index {
const mask = indexCacheLen - 1
c := &a.indexCache[r&mask]
if c.rune == r {
return c.index
}
i := a.f.Index(r)
c.rune = r
c.index = i
return i
}
// Close satisfies the font.Face interface.
func (a *face) Close() error { return nil }
// Metrics satisfies the font.Face interface.
func (a *face) Metrics() font.Metrics {
scale := float64(a.scale)
fupe := float64(a.f.FUnitsPerEm())
return font.Metrics{
Height: a.scale,
Ascent: fixed.Int26_6(math.Ceil(scale * float64(+a.f.ascent) / fupe)),
Descent: fixed.Int26_6(math.Ceil(scale * float64(-a.f.descent) / fupe)),
}
}
// Kern satisfies the font.Face interface.
func (a *face) Kern(r0, r1 rune) fixed.Int26_6 {
i0 := a.index(r0)
i1 := a.index(r1)
kern := a.f.Kern(a.scale, i0, i1)
if a.hinting != font.HintingNone {
kern = (kern + 32) &^ 63
}
return kern
}
// Glyph satisfies the font.Face interface.
func (a *face) Glyph(dot fixed.Point26_6, r rune) (
dr image.Rectangle, mask image.Image, maskp image.Point, advance fixed.Int26_6, ok bool) {
// Quantize to the sub-pixel granularity.
dotX := (dot.X + a.subPixelBiasX) & a.subPixelMaskX
dotY := (dot.Y + a.subPixelBiasY) & a.subPixelMaskY
// Split the coordinates into their integer and fractional parts.
ix, fx := int(dotX>>6), dotX&0x3f
iy, fy := int(dotY>>6), dotY&0x3f
index := a.index(r)
cIndex := uint32(index)
cIndex = cIndex*a.subPixelX - uint32(fx/a.subPixelMaskX)
cIndex = cIndex*a.subPixelY - uint32(fy/a.subPixelMaskY)
cIndex &= uint32(len(a.glyphCache) - 1)
a.paintOffset = a.maxh * int(cIndex)
k := glyphCacheKey{
index: index,
fx: uint8(fx),
fy: uint8(fy),
}
var v glyphCacheVal
if a.glyphCache[cIndex].key != k {
var ok bool
v, ok = a.rasterize(index, fx, fy)
if !ok {
return image.Rectangle{}, nil, image.Point{}, 0, false
}
a.glyphCache[cIndex] = glyphCacheEntry{k, v}
} else {
v = a.glyphCache[cIndex].val
}
dr.Min = image.Point{
X: ix + v.offset.X,
Y: iy + v.offset.Y,
}
dr.Max = image.Point{
X: dr.Min.X + v.gw,
Y: dr.Min.Y + v.gh,
}
return dr, a.masks, image.Point{Y: a.paintOffset}, v.advanceWidth, true
}
func (a *face) GlyphBounds(r rune) (bounds fixed.Rectangle26_6, advance fixed.Int26_6, ok bool) {
if err := a.glyphBuf.Load(a.f, a.scale, a.index(r), a.hinting); err != nil {
return fixed.Rectangle26_6{}, 0, false
}
xmin := +a.glyphBuf.Bounds.Min.X
ymin := -a.glyphBuf.Bounds.Max.Y
xmax := +a.glyphBuf.Bounds.Max.X
ymax := -a.glyphBuf.Bounds.Min.Y
if xmin > xmax || ymin > ymax {
return fixed.Rectangle26_6{}, 0, false
}
return fixed.Rectangle26_6{
Min: fixed.Point26_6{
X: xmin,
Y: ymin,
},
Max: fixed.Point26_6{
X: xmax,
Y: ymax,
},
}, a.glyphBuf.AdvanceWidth, true
}
func (a *face) GlyphAdvance(r rune) (advance fixed.Int26_6, ok bool) {
if err := a.glyphBuf.Load(a.f, a.scale, a.index(r), a.hinting); err != nil {
return 0, false
}
return a.glyphBuf.AdvanceWidth, true
}
// rasterize returns the advance width, integer-pixel offset to render at, and
// the width and height of the given glyph at the given sub-pixel offsets.
//
// The 26.6 fixed point arguments fx and fy must be in the range [0, 1).
func (a *face) rasterize(index Index, fx, fy fixed.Int26_6) (v glyphCacheVal, ok bool) {
if err := a.glyphBuf.Load(a.f, a.scale, index, a.hinting); err != nil {
return glyphCacheVal{}, false
}
// Calculate the integer-pixel bounds for the glyph.
xmin := int(fx+a.glyphBuf.Bounds.Min.X) >> 6
ymin := int(fy-a.glyphBuf.Bounds.Max.Y) >> 6
xmax := int(fx+a.glyphBuf.Bounds.Max.X+0x3f) >> 6
ymax := int(fy-a.glyphBuf.Bounds.Min.Y+0x3f) >> 6
if xmin > xmax || ymin > ymax {
return glyphCacheVal{}, false
}
// A TrueType's glyph's nodes can have negative co-ordinates, but the
// rasterizer clips anything left of x=0 or above y=0. xmin and ymin are
// the pixel offsets, based on the font's FUnit metrics, that let a
// negative co-ordinate in TrueType space be non-negative in rasterizer
// space. xmin and ymin are typically <= 0.
fx -= fixed.Int26_6(xmin << 6)
fy -= fixed.Int26_6(ymin << 6)
// Rasterize the glyph's vectors.
a.r.Clear()
pixOffset := a.paintOffset * a.maxw
clear(a.masks.Pix[pixOffset : pixOffset+a.maxw*a.maxh])
e0 := 0
for _, e1 := range a.glyphBuf.Ends {
a.drawContour(a.glyphBuf.Points[e0:e1], fx, fy)
e0 = e1
}
a.r.Rasterize(a.p)
return glyphCacheVal{
a.glyphBuf.AdvanceWidth,
image.Point{xmin, ymin},
xmax - xmin,
ymax - ymin,
}, true
}
func clear(pix []byte) {
for i := range pix {
pix[i] = 0
}
}
// drawContour draws the given closed contour with the given offset.
func (a *face) drawContour(ps []Point, dx, dy fixed.Int26_6) {
if len(ps) == 0 {
return
}
// The low bit of each point's Flags value is whether the point is on the
// curve. Truetype fonts only have quadratic Bézier curves, not cubics.
// Thus, two consecutive off-curve points imply an on-curve point in the
// middle of those two.
//
// See http://chanae.walon.org/pub/ttf/ttf_glyphs.htm for more details.
// ps[0] is a truetype.Point measured in FUnits and positive Y going
// upwards. start is the same thing measured in fixed point units and
// positive Y going downwards, and offset by (dx, dy).
start := fixed.Point26_6{
X: dx + ps[0].X,
Y: dy - ps[0].Y,
}
var others []Point
if ps[0].Flags&0x01 != 0 {
others = ps[1:]
} else {
last := fixed.Point26_6{
X: dx + ps[len(ps)-1].X,
Y: dy - ps[len(ps)-1].Y,
}
if ps[len(ps)-1].Flags&0x01 != 0 {
start = last
others = ps[:len(ps)-1]
} else {
start = fixed.Point26_6{
X: (start.X + last.X) / 2,
Y: (start.Y + last.Y) / 2,
}
others = ps
}
}
a.r.Start(start)
q0, on0 := start, true
for _, p := range others {
q := fixed.Point26_6{
X: dx + p.X,
Y: dy - p.Y,
}
on := p.Flags&0x01 != 0
if on {
if on0 {
a.r.Add1(q)
} else {
a.r.Add2(q0, q)
}
} else {
if on0 {
// No-op.
} else {
mid := fixed.Point26_6{
X: (q0.X + q.X) / 2,
Y: (q0.Y + q.Y) / 2,
}
a.r.Add2(q0, mid)
}
}
q0, on0 = q, on
}
// Close the curve.
if on0 {
a.r.Add1(start)
} else {
a.r.Add2(q0, start)
}
}
// facePainter is like a raster.AlphaSrcPainter, with an additional Y offset
// (face.paintOffset) to the painted spans.
type facePainter struct {
a *face
}
func (p facePainter) Paint(ss []raster.Span, done bool) {
m := p.a.masks
b := m.Bounds()
b.Min.Y = p.a.paintOffset
b.Max.Y = p.a.paintOffset + p.a.maxh
for _, s := range ss {
s.Y += p.a.paintOffset
if s.Y < b.Min.Y {
continue
}
if s.Y >= b.Max.Y {
return
}
if s.X0 < b.Min.X {
s.X0 = b.Min.X
}
if s.X1 > b.Max.X {
s.X1 = b.Max.X
}
if s.X0 >= s.X1 {
continue
}
base := (s.Y-m.Rect.Min.Y)*m.Stride - m.Rect.Min.X
p := m.Pix[base+s.X0 : base+s.X1]
color := uint8(s.Alpha >> 8)
for i := range p {
p[i] = color
}
}
}

517
vendor/github.com/golang/freetype/truetype/glyph.go generated vendored Normal file
View file

@ -0,0 +1,517 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
import (
"golang.org/x/image/font"
"golang.org/x/image/math/fixed"
)
// TODO: implement VerticalHinting.
// A Point is a co-ordinate pair plus whether it is 'on' a contour or an 'off'
// control point.
type Point struct {
X, Y fixed.Int26_6
// The Flags' LSB means whether or not this Point is 'on' the contour.
// Other bits are reserved for internal use.
Flags uint32
}
// A GlyphBuf holds a glyph's contours. A GlyphBuf can be re-used to load a
// series of glyphs from a Font.
type GlyphBuf struct {
// AdvanceWidth is the glyph's advance width.
AdvanceWidth fixed.Int26_6
// Bounds is the glyph's bounding box.
Bounds fixed.Rectangle26_6
// Points contains all Points from all contours of the glyph. If hinting
// was used to load a glyph then Unhinted contains those Points before they
// were hinted, and InFontUnits contains those Points before they were
// hinted and scaled.
Points, Unhinted, InFontUnits []Point
// Ends is the point indexes of the end point of each contour. The length
// of Ends is the number of contours in the glyph. The i'th contour
// consists of points Points[Ends[i-1]:Ends[i]], where Ends[-1] is
// interpreted to mean zero.
Ends []int
font *Font
scale fixed.Int26_6
hinting font.Hinting
hinter hinter
// phantomPoints are the co-ordinates of the synthetic phantom points
// used for hinting and bounding box calculations.
phantomPoints [4]Point
// pp1x is the X co-ordinate of the first phantom point. The '1' is
// using 1-based indexing; pp1x is almost always phantomPoints[0].X.
// TODO: eliminate this and consistently use phantomPoints[0].X.
pp1x fixed.Int26_6
// metricsSet is whether the glyph's metrics have been set yet. For a
// compound glyph, a sub-glyph may override the outer glyph's metrics.
metricsSet bool
// tmp is a scratch buffer.
tmp []Point
}
// Flags for decoding a glyph's contours. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagOnCurve = 1 << iota
flagXShortVector
flagYShortVector
flagRepeat
flagPositiveXShortVector
flagPositiveYShortVector
// The remaining flags are for internal use.
flagTouchedX
flagTouchedY
)
// The same flag bits (0x10 and 0x20) are overloaded to have two meanings,
// dependent on the value of the flag{X,Y}ShortVector bits.
const (
flagThisXIsSame = flagPositiveXShortVector
flagThisYIsSame = flagPositiveYShortVector
)
// Load loads a glyph's contours from a Font, overwriting any previously loaded
// contours for this GlyphBuf. scale is the number of 26.6 fixed point units in
// 1 em, i is the glyph index, and h is the hinting policy.
func (g *GlyphBuf) Load(f *Font, scale fixed.Int26_6, i Index, h font.Hinting) error {
g.Points = g.Points[:0]
g.Unhinted = g.Unhinted[:0]
g.InFontUnits = g.InFontUnits[:0]
g.Ends = g.Ends[:0]
g.font = f
g.hinting = h
g.scale = scale
g.pp1x = 0
g.phantomPoints = [4]Point{}
g.metricsSet = false
if h != font.HintingNone {
if err := g.hinter.init(f, scale); err != nil {
return err
}
}
if err := g.load(0, i, true); err != nil {
return err
}
// TODO: this selection of either g.pp1x or g.phantomPoints[0].X isn't ideal,
// and should be cleaned up once we have all the testScaling tests passing,
// plus additional tests for Freetype-Go's bounding boxes matching C Freetype's.
pp1x := g.pp1x
if h != font.HintingNone {
pp1x = g.phantomPoints[0].X
}
if pp1x != 0 {
for i := range g.Points {
g.Points[i].X -= pp1x
}
}
advanceWidth := g.phantomPoints[1].X - g.phantomPoints[0].X
if h != font.HintingNone {
if len(f.hdmx) >= 8 {
if n := u32(f.hdmx, 4); n > 3+uint32(i) {
for hdmx := f.hdmx[8:]; uint32(len(hdmx)) >= n; hdmx = hdmx[n:] {
if fixed.Int26_6(hdmx[0]) == scale>>6 {
advanceWidth = fixed.Int26_6(hdmx[2+i]) << 6
break
}
}
}
}
advanceWidth = (advanceWidth + 32) &^ 63
}
g.AdvanceWidth = advanceWidth
// Set g.Bounds to the 'control box', which is the bounding box of the
// Bézier curves' control points. This is easier to calculate, no smaller
// than and often equal to the tightest possible bounding box of the curves
// themselves. This approach is what C Freetype does. We can't just scale
// the nominal bounding box in the glyf data as the hinting process and
// phantom point adjustment may move points outside of that box.
if len(g.Points) == 0 {
g.Bounds = fixed.Rectangle26_6{}
} else {
p := g.Points[0]
g.Bounds.Min.X = p.X
g.Bounds.Max.X = p.X
g.Bounds.Min.Y = p.Y
g.Bounds.Max.Y = p.Y
for _, p := range g.Points[1:] {
if g.Bounds.Min.X > p.X {
g.Bounds.Min.X = p.X
} else if g.Bounds.Max.X < p.X {
g.Bounds.Max.X = p.X
}
if g.Bounds.Min.Y > p.Y {
g.Bounds.Min.Y = p.Y
} else if g.Bounds.Max.Y < p.Y {
g.Bounds.Max.Y = p.Y
}
}
// Snap the box to the grid, if hinting is on.
if h != font.HintingNone {
g.Bounds.Min.X &^= 63
g.Bounds.Min.Y &^= 63
g.Bounds.Max.X += 63
g.Bounds.Max.X &^= 63
g.Bounds.Max.Y += 63
g.Bounds.Max.Y &^= 63
}
}
return nil
}
func (g *GlyphBuf) load(recursion uint32, i Index, useMyMetrics bool) (err error) {
// The recursion limit here is arbitrary, but defends against malformed glyphs.
if recursion >= 32 {
return UnsupportedError("excessive compound glyph recursion")
}
// Find the relevant slice of g.font.glyf.
var g0, g1 uint32
if g.font.locaOffsetFormat == locaOffsetFormatShort {
g0 = 2 * uint32(u16(g.font.loca, 2*int(i)))
g1 = 2 * uint32(u16(g.font.loca, 2*int(i)+2))
} else {
g0 = u32(g.font.loca, 4*int(i))
g1 = u32(g.font.loca, 4*int(i)+4)
}
// Decode the contour count and nominal bounding box, from the first
// 10 bytes of the glyf data. boundsYMin and boundsXMax, at offsets 4
// and 6, are unused.
glyf, ne, boundsXMin, boundsYMax := []byte(nil), 0, fixed.Int26_6(0), fixed.Int26_6(0)
if g0+10 <= g1 {
glyf = g.font.glyf[g0:g1]
ne = int(int16(u16(glyf, 0)))
boundsXMin = fixed.Int26_6(int16(u16(glyf, 2)))
boundsYMax = fixed.Int26_6(int16(u16(glyf, 8)))
}
// Create the phantom points.
uhm, pp1x := g.font.unscaledHMetric(i), fixed.Int26_6(0)
uvm := g.font.unscaledVMetric(i, boundsYMax)
g.phantomPoints = [4]Point{
{X: boundsXMin - uhm.LeftSideBearing},
{X: boundsXMin - uhm.LeftSideBearing + uhm.AdvanceWidth},
{X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing},
{X: uhm.AdvanceWidth / 2, Y: boundsYMax + uvm.TopSideBearing - uvm.AdvanceHeight},
}
if len(glyf) == 0 {
g.addPhantomsAndScale(len(g.Points), len(g.Points), true, true)
copy(g.phantomPoints[:], g.Points[len(g.Points)-4:])
g.Points = g.Points[:len(g.Points)-4]
return nil
}
// Load and hint the contours.
if ne < 0 {
if ne != -1 {
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html says that
// "the values -2, -3, and so forth, are reserved for future use."
return UnsupportedError("negative number of contours")
}
pp1x = g.font.scale(g.scale * (boundsXMin - uhm.LeftSideBearing))
if err := g.loadCompound(recursion, uhm, i, glyf, useMyMetrics); err != nil {
return err
}
} else {
np0, ne0 := len(g.Points), len(g.Ends)
program := g.loadSimple(glyf, ne)
g.addPhantomsAndScale(np0, np0, true, true)
pp1x = g.Points[len(g.Points)-4].X
if g.hinting != font.HintingNone {
if len(program) != 0 {
err := g.hinter.run(
program,
g.Points[np0:],
g.Unhinted[np0:],
g.InFontUnits[np0:],
g.Ends[ne0:],
)
if err != nil {
return err
}
}
// Drop the four phantom points.
g.InFontUnits = g.InFontUnits[:len(g.InFontUnits)-4]
g.Unhinted = g.Unhinted[:len(g.Unhinted)-4]
}
if useMyMetrics {
copy(g.phantomPoints[:], g.Points[len(g.Points)-4:])
}
g.Points = g.Points[:len(g.Points)-4]
if np0 != 0 {
// The hinting program expects the []Ends values to be indexed
// relative to the inner glyph, not the outer glyph, so we delay
// adding np0 until after the hinting program (if any) has run.
for i := ne0; i < len(g.Ends); i++ {
g.Ends[i] += np0
}
}
}
if useMyMetrics && !g.metricsSet {
g.metricsSet = true
g.pp1x = pp1x
}
return nil
}
// loadOffset is the initial offset for loadSimple and loadCompound. The first
// 10 bytes are the number of contours and the bounding box.
const loadOffset = 10
func (g *GlyphBuf) loadSimple(glyf []byte, ne int) (program []byte) {
offset := loadOffset
for i := 0; i < ne; i++ {
g.Ends = append(g.Ends, 1+int(u16(glyf, offset)))
offset += 2
}
// Note the TrueType hinting instructions.
instrLen := int(u16(glyf, offset))
offset += 2
program = glyf[offset : offset+instrLen]
offset += instrLen
np0 := len(g.Points)
np1 := np0 + int(g.Ends[len(g.Ends)-1])
// Decode the flags.
for i := np0; i < np1; {
c := uint32(glyf[offset])
offset++
g.Points = append(g.Points, Point{Flags: c})
i++
if c&flagRepeat != 0 {
count := glyf[offset]
offset++
for ; count > 0; count-- {
g.Points = append(g.Points, Point{Flags: c})
i++
}
}
}
// Decode the co-ordinates.
var x int16
for i := np0; i < np1; i++ {
f := g.Points[i].Flags
if f&flagXShortVector != 0 {
dx := int16(glyf[offset])
offset++
if f&flagPositiveXShortVector == 0 {
x -= dx
} else {
x += dx
}
} else if f&flagThisXIsSame == 0 {
x += int16(u16(glyf, offset))
offset += 2
}
g.Points[i].X = fixed.Int26_6(x)
}
var y int16
for i := np0; i < np1; i++ {
f := g.Points[i].Flags
if f&flagYShortVector != 0 {
dy := int16(glyf[offset])
offset++
if f&flagPositiveYShortVector == 0 {
y -= dy
} else {
y += dy
}
} else if f&flagThisYIsSame == 0 {
y += int16(u16(glyf, offset))
offset += 2
}
g.Points[i].Y = fixed.Int26_6(y)
}
return program
}
func (g *GlyphBuf) loadCompound(recursion uint32, uhm HMetric, i Index,
glyf []byte, useMyMetrics bool) error {
// Flags for decoding a compound glyph. These flags are documented at
// http://developer.apple.com/fonts/TTRefMan/RM06/Chap6glyf.html.
const (
flagArg1And2AreWords = 1 << iota
flagArgsAreXYValues
flagRoundXYToGrid
flagWeHaveAScale
flagUnused
flagMoreComponents
flagWeHaveAnXAndYScale
flagWeHaveATwoByTwo
flagWeHaveInstructions
flagUseMyMetrics
flagOverlapCompound
)
np0, ne0 := len(g.Points), len(g.Ends)
offset := loadOffset
for {
flags := u16(glyf, offset)
component := Index(u16(glyf, offset+2))
dx, dy, transform, hasTransform := fixed.Int26_6(0), fixed.Int26_6(0), [4]int16{}, false
if flags&flagArg1And2AreWords != 0 {
dx = fixed.Int26_6(int16(u16(glyf, offset+4)))
dy = fixed.Int26_6(int16(u16(glyf, offset+6)))
offset += 8
} else {
dx = fixed.Int26_6(int16(int8(glyf[offset+4])))
dy = fixed.Int26_6(int16(int8(glyf[offset+5])))
offset += 6
}
if flags&flagArgsAreXYValues == 0 {
return UnsupportedError("compound glyph transform vector")
}
if flags&(flagWeHaveAScale|flagWeHaveAnXAndYScale|flagWeHaveATwoByTwo) != 0 {
hasTransform = true
switch {
case flags&flagWeHaveAScale != 0:
transform[0] = int16(u16(glyf, offset+0))
transform[3] = transform[0]
offset += 2
case flags&flagWeHaveAnXAndYScale != 0:
transform[0] = int16(u16(glyf, offset+0))
transform[3] = int16(u16(glyf, offset+2))
offset += 4
case flags&flagWeHaveATwoByTwo != 0:
transform[0] = int16(u16(glyf, offset+0))
transform[1] = int16(u16(glyf, offset+2))
transform[2] = int16(u16(glyf, offset+4))
transform[3] = int16(u16(glyf, offset+6))
offset += 8
}
}
savedPP := g.phantomPoints
np0 := len(g.Points)
componentUMM := useMyMetrics && (flags&flagUseMyMetrics != 0)
if err := g.load(recursion+1, component, componentUMM); err != nil {
return err
}
if flags&flagUseMyMetrics == 0 {
g.phantomPoints = savedPP
}
if hasTransform {
for j := np0; j < len(g.Points); j++ {
p := &g.Points[j]
newX := 0 +
fixed.Int26_6((int64(p.X)*int64(transform[0])+1<<13)>>14) +
fixed.Int26_6((int64(p.Y)*int64(transform[2])+1<<13)>>14)
newY := 0 +
fixed.Int26_6((int64(p.X)*int64(transform[1])+1<<13)>>14) +
fixed.Int26_6((int64(p.Y)*int64(transform[3])+1<<13)>>14)
p.X, p.Y = newX, newY
}
}
dx = g.font.scale(g.scale * dx)
dy = g.font.scale(g.scale * dy)
if flags&flagRoundXYToGrid != 0 {
dx = (dx + 32) &^ 63
dy = (dy + 32) &^ 63
}
for j := np0; j < len(g.Points); j++ {
p := &g.Points[j]
p.X += dx
p.Y += dy
}
// TODO: also adjust g.InFontUnits and g.Unhinted?
if flags&flagMoreComponents == 0 {
break
}
}
instrLen := 0
if g.hinting != font.HintingNone && offset+2 <= len(glyf) {
instrLen = int(u16(glyf, offset))
offset += 2
}
g.addPhantomsAndScale(np0, len(g.Points), false, instrLen > 0)
points, ends := g.Points[np0:], g.Ends[ne0:]
g.Points = g.Points[:len(g.Points)-4]
for j := range points {
points[j].Flags &^= flagTouchedX | flagTouchedY
}
if instrLen == 0 {
if !g.metricsSet {
copy(g.phantomPoints[:], points[len(points)-4:])
}
return nil
}
// Hint the compound glyph.
program := glyf[offset : offset+instrLen]
// Temporarily adjust the ends to be relative to this compound glyph.
if np0 != 0 {
for i := range ends {
ends[i] -= np0
}
}
// Hinting instructions of a composite glyph completely refer to the
// (already) hinted subglyphs.
g.tmp = append(g.tmp[:0], points...)
if err := g.hinter.run(program, points, g.tmp, g.tmp, ends); err != nil {
return err
}
if np0 != 0 {
for i := range ends {
ends[i] += np0
}
}
if !g.metricsSet {
copy(g.phantomPoints[:], points[len(points)-4:])
}
return nil
}
func (g *GlyphBuf) addPhantomsAndScale(np0, np1 int, simple, adjust bool) {
// Add the four phantom points.
g.Points = append(g.Points, g.phantomPoints[:]...)
// Scale the points.
if simple && g.hinting != font.HintingNone {
g.InFontUnits = append(g.InFontUnits, g.Points[np1:]...)
}
for i := np1; i < len(g.Points); i++ {
p := &g.Points[i]
p.X = g.font.scale(g.scale * p.X)
p.Y = g.font.scale(g.scale * p.Y)
}
if g.hinting == font.HintingNone {
return
}
// Round the 1st phantom point to the grid, shifting all other points equally.
// Note that "all other points" starts from np0, not np1.
// TODO: delete this adjustment and the np0/np1 distinction, when
// we update the compatibility tests to C Freetype 2.5.3.
// See http://git.savannah.gnu.org/cgit/freetype/freetype2.git/commit/?id=05c786d990390a7ca18e62962641dac740bacb06
if adjust {
pp1x := g.Points[len(g.Points)-4].X
if dx := ((pp1x + 32) &^ 63) - pp1x; dx != 0 {
for i := np0; i < len(g.Points); i++ {
g.Points[i].X += dx
}
}
}
if simple {
g.Unhinted = append(g.Unhinted, g.Points[np1:]...)
}
// Round the 2nd and 4th phantom point to the grid.
p := &g.Points[len(g.Points)-3]
p.X = (p.X + 32) &^ 63
p = &g.Points[len(g.Points)-1]
p.Y = (p.Y + 32) &^ 63
}

1770
vendor/github.com/golang/freetype/truetype/hint.go generated vendored Normal file

File diff suppressed because it is too large Load diff

289
vendor/github.com/golang/freetype/truetype/opcodes.go generated vendored Normal file
View file

@ -0,0 +1,289 @@
// Copyright 2012 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
package truetype
// The Truetype opcodes are summarized at
// https://developer.apple.com/fonts/TTRefMan/RM07/appendixA.html
const (
opSVTCA0 = 0x00 // Set freedom and projection Vectors To Coordinate Axis
opSVTCA1 = 0x01 // .
opSPVTCA0 = 0x02 // Set Projection Vector To Coordinate Axis
opSPVTCA1 = 0x03 // .
opSFVTCA0 = 0x04 // Set Freedom Vector to Coordinate Axis
opSFVTCA1 = 0x05 // .
opSPVTL0 = 0x06 // Set Projection Vector To Line
opSPVTL1 = 0x07 // .
opSFVTL0 = 0x08 // Set Freedom Vector To Line
opSFVTL1 = 0x09 // .
opSPVFS = 0x0a // Set Projection Vector From Stack
opSFVFS = 0x0b // Set Freedom Vector From Stack
opGPV = 0x0c // Get Projection Vector
opGFV = 0x0d // Get Freedom Vector
opSFVTPV = 0x0e // Set Freedom Vector To Projection Vector
opISECT = 0x0f // moves point p to the InterSECTion of two lines
opSRP0 = 0x10 // Set Reference Point 0
opSRP1 = 0x11 // Set Reference Point 1
opSRP2 = 0x12 // Set Reference Point 2
opSZP0 = 0x13 // Set Zone Pointer 0
opSZP1 = 0x14 // Set Zone Pointer 1
opSZP2 = 0x15 // Set Zone Pointer 2
opSZPS = 0x16 // Set Zone PointerS
opSLOOP = 0x17 // Set LOOP variable
opRTG = 0x18 // Round To Grid
opRTHG = 0x19 // Round To Half Grid
opSMD = 0x1a // Set Minimum Distance
opELSE = 0x1b // ELSE clause
opJMPR = 0x1c // JuMP Relative
opSCVTCI = 0x1d // Set Control Value Table Cut-In
opSSWCI = 0x1e // Set Single Width Cut-In
opSSW = 0x1f // Set Single Width
opDUP = 0x20 // DUPlicate top stack element
opPOP = 0x21 // POP top stack element
opCLEAR = 0x22 // CLEAR the stack
opSWAP = 0x23 // SWAP the top two elements on the stack
opDEPTH = 0x24 // DEPTH of the stack
opCINDEX = 0x25 // Copy the INDEXed element to the top of the stack
opMINDEX = 0x26 // Move the INDEXed element to the top of the stack
opALIGNPTS = 0x27 // ALIGN PoinTS
op_0x28 = 0x28 // deprecated
opUTP = 0x29 // UnTouch Point
opLOOPCALL = 0x2a // LOOP and CALL function
opCALL = 0x2b // CALL function
opFDEF = 0x2c // Function DEFinition
opENDF = 0x2d // END Function definition
opMDAP0 = 0x2e // Move Direct Absolute Point
opMDAP1 = 0x2f // .
opIUP0 = 0x30 // Interpolate Untouched Points through the outline
opIUP1 = 0x31 // .
opSHP0 = 0x32 // SHift Point using reference point
opSHP1 = 0x33 // .
opSHC0 = 0x34 // SHift Contour using reference point
opSHC1 = 0x35 // .
opSHZ0 = 0x36 // SHift Zone using reference point
opSHZ1 = 0x37 // .
opSHPIX = 0x38 // SHift point by a PIXel amount
opIP = 0x39 // Interpolate Point
opMSIRP0 = 0x3a // Move Stack Indirect Relative Point
opMSIRP1 = 0x3b // .
opALIGNRP = 0x3c // ALIGN to Reference Point
opRTDG = 0x3d // Round To Double Grid
opMIAP0 = 0x3e // Move Indirect Absolute Point
opMIAP1 = 0x3f // .
opNPUSHB = 0x40 // PUSH N Bytes
opNPUSHW = 0x41 // PUSH N Words
opWS = 0x42 // Write Store
opRS = 0x43 // Read Store
opWCVTP = 0x44 // Write Control Value Table in Pixel units
opRCVT = 0x45 // Read Control Value Table entry
opGC0 = 0x46 // Get Coordinate projected onto the projection vector
opGC1 = 0x47 // .
opSCFS = 0x48 // Sets Coordinate From the Stack using projection vector and freedom vector
opMD0 = 0x49 // Measure Distance
opMD1 = 0x4a // .
opMPPEM = 0x4b // Measure Pixels Per EM
opMPS = 0x4c // Measure Point Size
opFLIPON = 0x4d // set the auto FLIP Boolean to ON
opFLIPOFF = 0x4e // set the auto FLIP Boolean to OFF
opDEBUG = 0x4f // DEBUG call
opLT = 0x50 // Less Than
opLTEQ = 0x51 // Less Than or EQual
opGT = 0x52 // Greater Than
opGTEQ = 0x53 // Greater Than or EQual
opEQ = 0x54 // EQual
opNEQ = 0x55 // Not EQual
opODD = 0x56 // ODD
opEVEN = 0x57 // EVEN
opIF = 0x58 // IF test
opEIF = 0x59 // End IF
opAND = 0x5a // logical AND
opOR = 0x5b // logical OR
opNOT = 0x5c // logical NOT
opDELTAP1 = 0x5d // DELTA exception P1
opSDB = 0x5e // Set Delta Base in the graphics state
opSDS = 0x5f // Set Delta Shift in the graphics state
opADD = 0x60 // ADD
opSUB = 0x61 // SUBtract
opDIV = 0x62 // DIVide
opMUL = 0x63 // MULtiply
opABS = 0x64 // ABSolute value
opNEG = 0x65 // NEGate
opFLOOR = 0x66 // FLOOR
opCEILING = 0x67 // CEILING
opROUND00 = 0x68 // ROUND value
opROUND01 = 0x69 // .
opROUND10 = 0x6a // .
opROUND11 = 0x6b // .
opNROUND00 = 0x6c // No ROUNDing of value
opNROUND01 = 0x6d // .
opNROUND10 = 0x6e // .
opNROUND11 = 0x6f // .
opWCVTF = 0x70 // Write Control Value Table in Funits
opDELTAP2 = 0x71 // DELTA exception P2
opDELTAP3 = 0x72 // DELTA exception P3
opDELTAC1 = 0x73 // DELTA exception C1
opDELTAC2 = 0x74 // DELTA exception C2
opDELTAC3 = 0x75 // DELTA exception C3
opSROUND = 0x76 // Super ROUND
opS45ROUND = 0x77 // Super ROUND 45 degrees
opJROT = 0x78 // Jump Relative On True
opJROF = 0x79 // Jump Relative On False
opROFF = 0x7a // Round OFF
op_0x7b = 0x7b // deprecated
opRUTG = 0x7c // Round Up To Grid
opRDTG = 0x7d // Round Down To Grid
opSANGW = 0x7e // Set ANGle Weight
opAA = 0x7f // Adjust Angle
opFLIPPT = 0x80 // FLIP PoinT
opFLIPRGON = 0x81 // FLIP RanGe ON
opFLIPRGOFF = 0x82 // FLIP RanGe OFF
op_0x83 = 0x83 // deprecated
op_0x84 = 0x84 // deprecated
opSCANCTRL = 0x85 // SCAN conversion ConTRoL
opSDPVTL0 = 0x86 // Set Dual Projection Vector To Line
opSDPVTL1 = 0x87 // .
opGETINFO = 0x88 // GET INFOrmation
opIDEF = 0x89 // Instruction DEFinition
opROLL = 0x8a // ROLL the top three stack elements
opMAX = 0x8b // MAXimum of top two stack elements
opMIN = 0x8c // MINimum of top two stack elements
opSCANTYPE = 0x8d // SCANTYPE
opINSTCTRL = 0x8e // INSTRuction execution ConTRoL
op_0x8f = 0x8f
op_0x90 = 0x90
op_0x91 = 0x91
op_0x92 = 0x92
op_0x93 = 0x93
op_0x94 = 0x94
op_0x95 = 0x95
op_0x96 = 0x96
op_0x97 = 0x97
op_0x98 = 0x98
op_0x99 = 0x99
op_0x9a = 0x9a
op_0x9b = 0x9b
op_0x9c = 0x9c
op_0x9d = 0x9d
op_0x9e = 0x9e
op_0x9f = 0x9f
op_0xa0 = 0xa0
op_0xa1 = 0xa1
op_0xa2 = 0xa2
op_0xa3 = 0xa3
op_0xa4 = 0xa4
op_0xa5 = 0xa5
op_0xa6 = 0xa6
op_0xa7 = 0xa7
op_0xa8 = 0xa8
op_0xa9 = 0xa9
op_0xaa = 0xaa
op_0xab = 0xab
op_0xac = 0xac
op_0xad = 0xad
op_0xae = 0xae
op_0xaf = 0xaf
opPUSHB000 = 0xb0 // PUSH Bytes
opPUSHB001 = 0xb1 // .
opPUSHB010 = 0xb2 // .
opPUSHB011 = 0xb3 // .
opPUSHB100 = 0xb4 // .
opPUSHB101 = 0xb5 // .
opPUSHB110 = 0xb6 // .
opPUSHB111 = 0xb7 // .
opPUSHW000 = 0xb8 // PUSH Words
opPUSHW001 = 0xb9 // .
opPUSHW010 = 0xba // .
opPUSHW011 = 0xbb // .
opPUSHW100 = 0xbc // .
opPUSHW101 = 0xbd // .
opPUSHW110 = 0xbe // .
opPUSHW111 = 0xbf // .
opMDRP00000 = 0xc0 // Move Direct Relative Point
opMDRP00001 = 0xc1 // .
opMDRP00010 = 0xc2 // .
opMDRP00011 = 0xc3 // .
opMDRP00100 = 0xc4 // .
opMDRP00101 = 0xc5 // .
opMDRP00110 = 0xc6 // .
opMDRP00111 = 0xc7 // .
opMDRP01000 = 0xc8 // .
opMDRP01001 = 0xc9 // .
opMDRP01010 = 0xca // .
opMDRP01011 = 0xcb // .
opMDRP01100 = 0xcc // .
opMDRP01101 = 0xcd // .
opMDRP01110 = 0xce // .
opMDRP01111 = 0xcf // .
opMDRP10000 = 0xd0 // .
opMDRP10001 = 0xd1 // .
opMDRP10010 = 0xd2 // .
opMDRP10011 = 0xd3 // .
opMDRP10100 = 0xd4 // .
opMDRP10101 = 0xd5 // .
opMDRP10110 = 0xd6 // .
opMDRP10111 = 0xd7 // .
opMDRP11000 = 0xd8 // .
opMDRP11001 = 0xd9 // .
opMDRP11010 = 0xda // .
opMDRP11011 = 0xdb // .
opMDRP11100 = 0xdc // .
opMDRP11101 = 0xdd // .
opMDRP11110 = 0xde // .
opMDRP11111 = 0xdf // .
opMIRP00000 = 0xe0 // Move Indirect Relative Point
opMIRP00001 = 0xe1 // .
opMIRP00010 = 0xe2 // .
opMIRP00011 = 0xe3 // .
opMIRP00100 = 0xe4 // .
opMIRP00101 = 0xe5 // .
opMIRP00110 = 0xe6 // .
opMIRP00111 = 0xe7 // .
opMIRP01000 = 0xe8 // .
opMIRP01001 = 0xe9 // .
opMIRP01010 = 0xea // .
opMIRP01011 = 0xeb // .
opMIRP01100 = 0xec // .
opMIRP01101 = 0xed // .
opMIRP01110 = 0xee // .
opMIRP01111 = 0xef // .
opMIRP10000 = 0xf0 // .
opMIRP10001 = 0xf1 // .
opMIRP10010 = 0xf2 // .
opMIRP10011 = 0xf3 // .
opMIRP10100 = 0xf4 // .
opMIRP10101 = 0xf5 // .
opMIRP10110 = 0xf6 // .
opMIRP10111 = 0xf7 // .
opMIRP11000 = 0xf8 // .
opMIRP11001 = 0xf9 // .
opMIRP11010 = 0xfa // .
opMIRP11011 = 0xfb // .
opMIRP11100 = 0xfc // .
opMIRP11101 = 0xfd // .
opMIRP11110 = 0xfe // .
opMIRP11111 = 0xff // .
)
// popCount is the number of stack elements that each opcode pops.
var popCount = [256]uint8{
// 1, 2, 3, 4, 5, 6, 7, 8, 9, a, b, c, d, e, f
0, 0, 0, 0, 0, 0, 2, 2, 2, 2, 2, 2, 0, 0, 0, 5, // 0x00 - 0x0f
1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, // 0x10 - 0x1f
1, 1, 0, 2, 0, 1, 1, 2, 0, 1, 2, 1, 1, 0, 1, 1, // 0x20 - 0x2f
0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 2, 2, 0, 0, 2, 2, // 0x30 - 0x3f
0, 0, 2, 1, 2, 1, 1, 1, 2, 2, 2, 0, 0, 0, 0, 0, // 0x40 - 0x4f
2, 2, 2, 2, 2, 2, 1, 1, 1, 0, 2, 2, 1, 1, 1, 1, // 0x50 - 0x5f
2, 2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0x60 - 0x6f
2, 1, 1, 1, 1, 1, 1, 1, 2, 2, 0, 0, 0, 0, 1, 1, // 0x70 - 0x7f
0, 2, 2, 0, 0, 1, 2, 2, 1, 1, 3, 2, 2, 1, 2, 0, // 0x80 - 0x8f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0x90 - 0x9f
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xa0 - 0xaf
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, // 0xb0 - 0xbf
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0xc0 - 0xcf
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, // 0xd0 - 0xdf
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 0xe0 - 0xef
2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, // 0xf0 - 0xff
}

643
vendor/github.com/golang/freetype/truetype/truetype.go generated vendored Normal file
View file

@ -0,0 +1,643 @@
// Copyright 2010 The Freetype-Go Authors. All rights reserved.
// Use of this source code is governed by your choice of either the
// FreeType License or the GNU General Public License version 2 (or
// any later version), both of which can be found in the LICENSE file.
// Package truetype provides a parser for the TTF and TTC file formats.
// Those formats are documented at http://developer.apple.com/fonts/TTRefMan/
// and http://www.microsoft.com/typography/otspec/
//
// Some of a font's methods provide lengths or co-ordinates, e.g. bounds, font
// metrics and control points. All these methods take a scale parameter, which
// is the number of pixels in 1 em, expressed as a 26.6 fixed point value. For
// example, if 1 em is 10 pixels then scale is fixed.I(10), which is equal to
// fixed.Int26_6(10 << 6).
//
// To measure a TrueType font in ideal FUnit space, use scale equal to
// font.FUnitsPerEm().
package truetype
import (
"fmt"
"golang.org/x/image/math/fixed"
)
// An Index is a Font's index of a rune.
type Index uint16
// A NameID identifies a name table entry.
//
// See https://developer.apple.com/fonts/TrueType-Reference-Manual/RM06/Chap6name.html
type NameID uint16
const (
NameIDCopyright NameID = 0
NameIDFontFamily = 1
NameIDFontSubfamily = 2
NameIDUniqueSubfamilyID = 3
NameIDFontFullName = 4
NameIDNameTableVersion = 5
NameIDPostscriptName = 6
NameIDTrademarkNotice = 7
NameIDManufacturerName = 8
NameIDDesignerName = 9
NameIDFontDescription = 10
NameIDFontVendorURL = 11
NameIDFontDesignerURL = 12
NameIDFontLicense = 13
NameIDFontLicenseURL = 14
NameIDPreferredFamily = 16
NameIDPreferredSubfamily = 17
NameIDCompatibleName = 18
NameIDSampleText = 19
)
const (
// A 32-bit encoding consists of a most-significant 16-bit Platform ID and a
// least-significant 16-bit Platform Specific ID. The magic numbers are
// specified at https://www.microsoft.com/typography/otspec/name.htm
unicodeEncoding = 0x00000003 // PID = 0 (Unicode), PSID = 3 (Unicode 2.0)
microsoftSymbolEncoding = 0x00030000 // PID = 3 (Microsoft), PSID = 0 (Symbol)
microsoftUCS2Encoding = 0x00030001 // PID = 3 (Microsoft), PSID = 1 (UCS-2)
microsoftUCS4Encoding = 0x0003000a // PID = 3 (Microsoft), PSID = 10 (UCS-4)
)
// An HMetric holds the horizontal metrics of a single glyph.
type HMetric struct {
AdvanceWidth, LeftSideBearing fixed.Int26_6
}
// A VMetric holds the vertical metrics of a single glyph.
type VMetric struct {
AdvanceHeight, TopSideBearing fixed.Int26_6
}
// A FormatError reports that the input is not a valid TrueType font.
type FormatError string
func (e FormatError) Error() string {
return "freetype: invalid TrueType format: " + string(e)
}
// An UnsupportedError reports that the input uses a valid but unimplemented
// TrueType feature.
type UnsupportedError string
func (e UnsupportedError) Error() string {
return "freetype: unsupported TrueType feature: " + string(e)
}
// u32 returns the big-endian uint32 at b[i:].
func u32(b []byte, i int) uint32 {
return uint32(b[i])<<24 | uint32(b[i+1])<<16 | uint32(b[i+2])<<8 | uint32(b[i+3])
}
// u16 returns the big-endian uint16 at b[i:].
func u16(b []byte, i int) uint16 {
return uint16(b[i])<<8 | uint16(b[i+1])
}
// readTable returns a slice of the TTF data given by a table's directory entry.
func readTable(ttf []byte, offsetLength []byte) ([]byte, error) {
offset := int(u32(offsetLength, 0))
if offset < 0 {
return nil, FormatError(fmt.Sprintf("offset too large: %d", uint32(offset)))
}
length := int(u32(offsetLength, 4))
if length < 0 {
return nil, FormatError(fmt.Sprintf("length too large: %d", uint32(length)))
}
end := offset + length
if end < 0 || end > len(ttf) {
return nil, FormatError(fmt.Sprintf("offset + length too large: %d", uint32(offset)+uint32(length)))
}
return ttf[offset:end], nil
}
// parseSubtables returns the offset and platformID of the best subtable in
// table, where best favors a Unicode cmap encoding, and failing that, a
// Microsoft cmap encoding. offset is the offset of the first subtable in
// table, and size is the size of each subtable.
//
// If pred is non-nil, then only subtables that satisfy that predicate will be
// considered.
func parseSubtables(table []byte, name string, offset, size int, pred func([]byte) bool) (
bestOffset int, bestPID uint32, retErr error) {
if len(table) < 4 {
return 0, 0, FormatError(name + " too short")
}
nSubtables := int(u16(table, 2))
if len(table) < size*nSubtables+offset {
return 0, 0, FormatError(name + " too short")
}
ok := false
for i := 0; i < nSubtables; i, offset = i+1, offset+size {
if pred != nil && !pred(table[offset:]) {
continue
}
// We read the 16-bit Platform ID and 16-bit Platform Specific ID as a single uint32.
// All values are big-endian.
pidPsid := u32(table, offset)
// We prefer the Unicode cmap encoding. Failing to find that, we fall
// back onto the Microsoft cmap encoding.
if pidPsid == unicodeEncoding {
bestOffset, bestPID, ok = offset, pidPsid>>16, true
break
} else if pidPsid == microsoftSymbolEncoding ||
pidPsid == microsoftUCS2Encoding ||
pidPsid == microsoftUCS4Encoding {
bestOffset, bestPID, ok = offset, pidPsid>>16, true
// We don't break out of the for loop, so that Unicode can override Microsoft.
}
}
if !ok {
return 0, 0, UnsupportedError(name + " encoding")
}
return bestOffset, bestPID, nil
}
const (
locaOffsetFormatUnknown int = iota
locaOffsetFormatShort
locaOffsetFormatLong
)
// A cm holds a parsed cmap entry.
type cm struct {
start, end, delta, offset uint32
}
// A Font represents a Truetype font.
type Font struct {
// Tables sliced from the TTF data. The different tables are documented
// at http://developer.apple.com/fonts/TTRefMan/RM06/Chap6.html
cmap, cvt, fpgm, glyf, hdmx, head, hhea, hmtx, kern, loca, maxp, name, os2, prep, vmtx []byte
cmapIndexes []byte
// Cached values derived from the raw ttf data.
cm []cm
locaOffsetFormat int
nGlyph, nHMetric, nKern int
fUnitsPerEm int32
ascent int32 // In FUnits.
descent int32 // In FUnits; typically negative.
bounds fixed.Rectangle26_6 // In FUnits.
// Values from the maxp section.
maxTwilightPoints, maxStorage, maxFunctionDefs, maxStackElements uint16
}
func (f *Font) parseCmap() error {
const (
cmapFormat4 = 4
cmapFormat12 = 12
languageIndependent = 0
)
offset, _, err := parseSubtables(f.cmap, "cmap", 4, 8, nil)
if err != nil {
return err
}
offset = int(u32(f.cmap, offset+4))
if offset <= 0 || offset > len(f.cmap) {
return FormatError("bad cmap offset")
}
cmapFormat := u16(f.cmap, offset)
switch cmapFormat {
case cmapFormat4:
language := u16(f.cmap, offset+4)
if language != languageIndependent {
return UnsupportedError(fmt.Sprintf("language: %d", language))
}
segCountX2 := int(u16(f.cmap, offset+6))
if segCountX2%2 == 1 {
return FormatError(fmt.Sprintf("bad segCountX2: %d", segCountX2))
}
segCount := segCountX2 / 2
offset += 14
f.cm = make([]cm, segCount)
for i := 0; i < segCount; i++ {
f.cm[i].end = uint32(u16(f.cmap, offset))
offset += 2
}
offset += 2
for i := 0; i < segCount; i++ {
f.cm[i].start = uint32(u16(f.cmap, offset))
offset += 2
}
for i := 0; i < segCount; i++ {
f.cm[i].delta = uint32(u16(f.cmap, offset))
offset += 2
}
for i := 0; i < segCount; i++ {
f.cm[i].offset = uint32(u16(f.cmap, offset))
offset += 2
}
f.cmapIndexes = f.cmap[offset:]
return nil
case cmapFormat12:
if u16(f.cmap, offset+2) != 0 {
return FormatError(fmt.Sprintf("cmap format: % x", f.cmap[offset:offset+4]))
}
length := u32(f.cmap, offset+4)
language := u32(f.cmap, offset+8)
if language != languageIndependent {
return UnsupportedError(fmt.Sprintf("language: %d", language))
}
nGroups := u32(f.cmap, offset+12)
if length != 12*nGroups+16 {
return FormatError("inconsistent cmap length")
}
offset += 16
f.cm = make([]cm, nGroups)
for i := uint32(0); i < nGroups; i++ {
f.cm[i].start = u32(f.cmap, offset+0)
f.cm[i].end = u32(f.cmap, offset+4)
f.cm[i].delta = u32(f.cmap, offset+8) - f.cm[i].start
offset += 12
}
return nil
}
return UnsupportedError(fmt.Sprintf("cmap format: %d", cmapFormat))
}
func (f *Font) parseHead() error {
if len(f.head) != 54 {
return FormatError(fmt.Sprintf("bad head length: %d", len(f.head)))
}
f.fUnitsPerEm = int32(u16(f.head, 18))
f.bounds.Min.X = fixed.Int26_6(int16(u16(f.head, 36)))
f.bounds.Min.Y = fixed.Int26_6(int16(u16(f.head, 38)))
f.bounds.Max.X = fixed.Int26_6(int16(u16(f.head, 40)))
f.bounds.Max.Y = fixed.Int26_6(int16(u16(f.head, 42)))
switch i := u16(f.head, 50); i {
case 0:
f.locaOffsetFormat = locaOffsetFormatShort
case 1:
f.locaOffsetFormat = locaOffsetFormatLong
default:
return FormatError(fmt.Sprintf("bad indexToLocFormat: %d", i))
}
return nil
}
func (f *Font) parseHhea() error {
if len(f.hhea) != 36 {
return FormatError(fmt.Sprintf("bad hhea length: %d", len(f.hhea)))
}
f.ascent = int32(int16(u16(f.hhea, 4)))
f.descent = int32(int16(u16(f.hhea, 6)))
f.nHMetric = int(u16(f.hhea, 34))
if 4*f.nHMetric+2*(f.nGlyph-f.nHMetric) != len(f.hmtx) {
return FormatError(fmt.Sprintf("bad hmtx length: %d", len(f.hmtx)))
}
return nil
}
func (f *Font) parseKern() error {
// Apple's TrueType documentation (http://developer.apple.com/fonts/TTRefMan/RM06/Chap6kern.html) says:
// "Previous versions of the 'kern' table defined both the version and nTables fields in the header
// as UInt16 values and not UInt32 values. Use of the older format on the Mac OS is discouraged
// (although AAT can sense an old kerning table and still make correct use of it). Microsoft
// Windows still uses the older format for the 'kern' table and will not recognize the newer one.
// Fonts targeted for the Mac OS only should use the new format; fonts targeted for both the Mac OS
// and Windows should use the old format."
// Since we expect that almost all fonts aim to be Windows-compatible, we only parse the "older" format,
// just like the C Freetype implementation.
if len(f.kern) == 0 {
if f.nKern != 0 {
return FormatError("bad kern table length")
}
return nil
}
if len(f.kern) < 18 {
return FormatError("kern data too short")
}
version, offset := u16(f.kern, 0), 2
if version != 0 {
return UnsupportedError(fmt.Sprintf("kern version: %d", version))
}
n, offset := u16(f.kern, offset), offset+2
if n != 1 {
return UnsupportedError(fmt.Sprintf("kern nTables: %d", n))
}
offset += 2
length, offset := int(u16(f.kern, offset)), offset+2
coverage, offset := u16(f.kern, offset), offset+2
if coverage != 0x0001 {
// We only support horizontal kerning.
return UnsupportedError(fmt.Sprintf("kern coverage: 0x%04x", coverage))
}
f.nKern, offset = int(u16(f.kern, offset)), offset+2
if 6*f.nKern != length-14 {
return FormatError("bad kern table length")
}
return nil
}
func (f *Font) parseMaxp() error {
if len(f.maxp) != 32 {
return FormatError(fmt.Sprintf("bad maxp length: %d", len(f.maxp)))
}
f.nGlyph = int(u16(f.maxp, 4))
f.maxTwilightPoints = u16(f.maxp, 16)
f.maxStorage = u16(f.maxp, 18)
f.maxFunctionDefs = u16(f.maxp, 20)
f.maxStackElements = u16(f.maxp, 24)
return nil
}
// scale returns x divided by f.fUnitsPerEm, rounded to the nearest integer.
func (f *Font) scale(x fixed.Int26_6) fixed.Int26_6 {
if x >= 0 {
x += fixed.Int26_6(f.fUnitsPerEm) / 2
} else {
x -= fixed.Int26_6(f.fUnitsPerEm) / 2
}
return x / fixed.Int26_6(f.fUnitsPerEm)
}
// Bounds returns the union of a Font's glyphs' bounds.
func (f *Font) Bounds(scale fixed.Int26_6) fixed.Rectangle26_6 {
b := f.bounds
b.Min.X = f.scale(scale * b.Min.X)
b.Min.Y = f.scale(scale * b.Min.Y)
b.Max.X = f.scale(scale * b.Max.X)
b.Max.Y = f.scale(scale * b.Max.Y)
return b
}
// FUnitsPerEm returns the number of FUnits in a Font's em-square's side.
func (f *Font) FUnitsPerEm() int32 {
return f.fUnitsPerEm
}
// Index returns a Font's index for the given rune.
func (f *Font) Index(x rune) Index {
c := uint32(x)
for i, j := 0, len(f.cm); i < j; {
h := i + (j-i)/2
cm := &f.cm[h]
if c < cm.start {
j = h
} else if cm.end < c {
i = h + 1
} else if cm.offset == 0 {
return Index(c + cm.delta)
} else {
offset := int(cm.offset) + 2*(h-len(f.cm)+int(c-cm.start))
return Index(u16(f.cmapIndexes, offset))
}
}
return 0
}
// Name returns the Font's name value for the given NameID. It returns "" if
// there was an error, or if that name was not found.
func (f *Font) Name(id NameID) string {
x, platformID, err := parseSubtables(f.name, "name", 6, 12, func(b []byte) bool {
return NameID(u16(b, 6)) == id
})
if err != nil {
return ""
}
offset, length := u16(f.name, 4)+u16(f.name, x+10), u16(f.name, x+8)
// Return the ASCII value of the encoded string.
// The string is encoded as UTF-16 on non-Apple platformIDs; Apple is platformID 1.
src := f.name[offset : offset+length]
var dst []byte
if platformID != 1 { // UTF-16.
if len(src)&1 != 0 {
return ""
}
dst = make([]byte, len(src)/2)
for i := range dst {
dst[i] = printable(u16(src, 2*i))
}
} else { // ASCII.
dst = make([]byte, len(src))
for i, c := range src {
dst[i] = printable(uint16(c))
}
}
return string(dst)
}
func printable(r uint16) byte {
if 0x20 <= r && r < 0x7f {
return byte(r)
}
return '?'
}
// unscaledHMetric returns the unscaled horizontal metrics for the glyph with
// the given index.
func (f *Font) unscaledHMetric(i Index) (h HMetric) {
j := int(i)
if j < 0 || f.nGlyph <= j {
return HMetric{}
}
if j >= f.nHMetric {
p := 4 * (f.nHMetric - 1)
return HMetric{
AdvanceWidth: fixed.Int26_6(u16(f.hmtx, p)),
LeftSideBearing: fixed.Int26_6(int16(u16(f.hmtx, p+2*(j-f.nHMetric)+4))),
}
}
return HMetric{
AdvanceWidth: fixed.Int26_6(u16(f.hmtx, 4*j)),
LeftSideBearing: fixed.Int26_6(int16(u16(f.hmtx, 4*j+2))),
}
}
// HMetric returns the horizontal metrics for the glyph with the given index.
func (f *Font) HMetric(scale fixed.Int26_6, i Index) HMetric {
h := f.unscaledHMetric(i)
h.AdvanceWidth = f.scale(scale * h.AdvanceWidth)
h.LeftSideBearing = f.scale(scale * h.LeftSideBearing)
return h
}
// unscaledVMetric returns the unscaled vertical metrics for the glyph with
// the given index. yMax is the top of the glyph's bounding box.
func (f *Font) unscaledVMetric(i Index, yMax fixed.Int26_6) (v VMetric) {
j := int(i)
if j < 0 || f.nGlyph <= j {
return VMetric{}
}
if 4*j+4 <= len(f.vmtx) {
return VMetric{
AdvanceHeight: fixed.Int26_6(u16(f.vmtx, 4*j)),
TopSideBearing: fixed.Int26_6(int16(u16(f.vmtx, 4*j+2))),
}
}
// The OS/2 table has grown over time.
// https://developer.apple.com/fonts/TTRefMan/RM06/Chap6OS2.html
// says that it was originally 68 bytes. Optional fields, including
// the ascender and descender, are described at
// http://www.microsoft.com/typography/otspec/os2.htm
if len(f.os2) >= 72 {
sTypoAscender := fixed.Int26_6(int16(u16(f.os2, 68)))
sTypoDescender := fixed.Int26_6(int16(u16(f.os2, 70)))
return VMetric{
AdvanceHeight: sTypoAscender - sTypoDescender,
TopSideBearing: sTypoAscender - yMax,
}
}
return VMetric{
AdvanceHeight: fixed.Int26_6(f.fUnitsPerEm),
TopSideBearing: 0,
}
}
// VMetric returns the vertical metrics for the glyph with the given index.
func (f *Font) VMetric(scale fixed.Int26_6, i Index) VMetric {
// TODO: should 0 be bounds.YMax?
v := f.unscaledVMetric(i, 0)
v.AdvanceHeight = f.scale(scale * v.AdvanceHeight)
v.TopSideBearing = f.scale(scale * v.TopSideBearing)
return v
}
// Kern returns the horizontal adjustment for the given glyph pair. A positive
// kern means to move the glyphs further apart.
func (f *Font) Kern(scale fixed.Int26_6, i0, i1 Index) fixed.Int26_6 {
if f.nKern == 0 {
return 0
}
g := uint32(i0)<<16 | uint32(i1)
lo, hi := 0, f.nKern
for lo < hi {
i := (lo + hi) / 2
ig := u32(f.kern, 18+6*i)
if ig < g {
lo = i + 1
} else if ig > g {
hi = i
} else {
return f.scale(scale * fixed.Int26_6(int16(u16(f.kern, 22+6*i))))
}
}
return 0
}
// Parse returns a new Font for the given TTF or TTC data.
//
// For TrueType Collections, the first font in the collection is parsed.
func Parse(ttf []byte) (font *Font, err error) {
return parse(ttf, 0)
}
func parse(ttf []byte, offset int) (font *Font, err error) {
if len(ttf)-offset < 12 {
err = FormatError("TTF data is too short")
return
}
originalOffset := offset
magic, offset := u32(ttf, offset), offset+4
switch magic {
case 0x00010000:
// No-op.
case 0x74746366: // "ttcf" as a big-endian uint32.
if originalOffset != 0 {
err = FormatError("recursive TTC")
return
}
ttcVersion, offset := u32(ttf, offset), offset+4
if ttcVersion != 0x00010000 {
// TODO: support TTC version 2.0, once I have such a .ttc file to test with.
err = FormatError("bad TTC version")
return
}
numFonts, offset := int(u32(ttf, offset)), offset+4
if numFonts <= 0 {
err = FormatError("bad number of TTC fonts")
return
}
if len(ttf[offset:])/4 < numFonts {
err = FormatError("TTC offset table is too short")
return
}
// TODO: provide an API to select which font in a TrueType collection to return,
// not just the first one. This may require an API to parse a TTC's name tables,
// so users of this package can select the font in a TTC by name.
offset = int(u32(ttf, offset))
if offset <= 0 || offset > len(ttf) {
err = FormatError("bad TTC offset")
return
}
return parse(ttf, offset)
default:
err = FormatError("bad TTF version")
return
}
n, offset := int(u16(ttf, offset)), offset+2
if len(ttf) < 16*n+12 {
err = FormatError("TTF data is too short")
return
}
f := new(Font)
// Assign the table slices.
for i := 0; i < n; i++ {
x := 16*i + 12
switch string(ttf[x : x+4]) {
case "cmap":
f.cmap, err = readTable(ttf, ttf[x+8:x+16])
case "cvt ":
f.cvt, err = readTable(ttf, ttf[x+8:x+16])
case "fpgm":
f.fpgm, err = readTable(ttf, ttf[x+8:x+16])
case "glyf":
f.glyf, err = readTable(ttf, ttf[x+8:x+16])
case "hdmx":
f.hdmx, err = readTable(ttf, ttf[x+8:x+16])
case "head":
f.head, err = readTable(ttf, ttf[x+8:x+16])
case "hhea":
f.hhea, err = readTable(ttf, ttf[x+8:x+16])
case "hmtx":
f.hmtx, err = readTable(ttf, ttf[x+8:x+16])
case "kern":
f.kern, err = readTable(ttf, ttf[x+8:x+16])
case "loca":
f.loca, err = readTable(ttf, ttf[x+8:x+16])
case "maxp":
f.maxp, err = readTable(ttf, ttf[x+8:x+16])
case "name":
f.name, err = readTable(ttf, ttf[x+8:x+16])
case "OS/2":
f.os2, err = readTable(ttf, ttf[x+8:x+16])
case "prep":
f.prep, err = readTable(ttf, ttf[x+8:x+16])
case "vmtx":
f.vmtx, err = readTable(ttf, ttf[x+8:x+16])
}
if err != nil {
return
}
}
// Parse and sanity-check the TTF data.
if err = f.parseHead(); err != nil {
return
}
if err = f.parseMaxp(); err != nil {
return
}
if err = f.parseCmap(); err != nil {
return
}
if err = f.parseKern(); err != nil {
return
}
if err = f.parseHhea(); err != nil {
return
}
font = f
return
}

8
vendor/github.com/gorilla/context/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,8 @@
language: go
sudo: false
go:
- 1.3
- 1.4
- 1.5
- tip

27
vendor/github.com/gorilla/context/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2012 Rodrigo Moraes. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

7
vendor/github.com/gorilla/context/README.md generated vendored Normal file
View file

@ -0,0 +1,7 @@
context
=======
[![Build Status](https://travis-ci.org/gorilla/context.png?branch=master)](https://travis-ci.org/gorilla/context)
gorilla/context is a general purpose registry for global request variables.
Read the full documentation here: http://www.gorillatoolkit.org/pkg/context

143
vendor/github.com/gorilla/context/context.go generated vendored Normal file
View file

@ -0,0 +1,143 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package context
import (
"net/http"
"sync"
"time"
)
var (
mutex sync.RWMutex
data = make(map[*http.Request]map[interface{}]interface{})
datat = make(map[*http.Request]int64)
)
// Set stores a value for a given key in a given request.
func Set(r *http.Request, key, val interface{}) {
mutex.Lock()
if data[r] == nil {
data[r] = make(map[interface{}]interface{})
datat[r] = time.Now().Unix()
}
data[r][key] = val
mutex.Unlock()
}
// Get returns a value stored for a given key in a given request.
func Get(r *http.Request, key interface{}) interface{} {
mutex.RLock()
if ctx := data[r]; ctx != nil {
value := ctx[key]
mutex.RUnlock()
return value
}
mutex.RUnlock()
return nil
}
// GetOk returns stored value and presence state like multi-value return of map access.
func GetOk(r *http.Request, key interface{}) (interface{}, bool) {
mutex.RLock()
if _, ok := data[r]; ok {
value, ok := data[r][key]
mutex.RUnlock()
return value, ok
}
mutex.RUnlock()
return nil, false
}
// GetAll returns all stored values for the request as a map. Nil is returned for invalid requests.
func GetAll(r *http.Request) map[interface{}]interface{} {
mutex.RLock()
if context, ok := data[r]; ok {
result := make(map[interface{}]interface{}, len(context))
for k, v := range context {
result[k] = v
}
mutex.RUnlock()
return result
}
mutex.RUnlock()
return nil
}
// GetAllOk returns all stored values for the request as a map and a boolean value that indicates if
// the request was registered.
func GetAllOk(r *http.Request) (map[interface{}]interface{}, bool) {
mutex.RLock()
context, ok := data[r]
result := make(map[interface{}]interface{}, len(context))
for k, v := range context {
result[k] = v
}
mutex.RUnlock()
return result, ok
}
// Delete removes a value stored for a given key in a given request.
func Delete(r *http.Request, key interface{}) {
mutex.Lock()
if data[r] != nil {
delete(data[r], key)
}
mutex.Unlock()
}
// Clear removes all values stored for a given request.
//
// This is usually called by a handler wrapper to clean up request
// variables at the end of a request lifetime. See ClearHandler().
func Clear(r *http.Request) {
mutex.Lock()
clear(r)
mutex.Unlock()
}
// clear is Clear without the lock.
func clear(r *http.Request) {
delete(data, r)
delete(datat, r)
}
// Purge removes request data stored for longer than maxAge, in seconds.
// It returns the amount of requests removed.
//
// If maxAge <= 0, all request data is removed.
//
// This is only used for sanity check: in case context cleaning was not
// properly set some request data can be kept forever, consuming an increasing
// amount of memory. In case this is detected, Purge() must be called
// periodically until the problem is fixed.
func Purge(maxAge int) int {
mutex.Lock()
count := 0
if maxAge <= 0 {
count = len(data)
data = make(map[*http.Request]map[interface{}]interface{})
datat = make(map[*http.Request]int64)
} else {
min := time.Now().Unix() - int64(maxAge)
for r := range data {
if datat[r] < min {
clear(r)
count++
}
}
}
mutex.Unlock()
return count
}
// ClearHandler wraps an http.Handler and clears request values at the end
// of a request lifetime.
func ClearHandler(h http.Handler) http.Handler {
return http.HandlerFunc(func(w http.ResponseWriter, r *http.Request) {
defer Clear(r)
h.ServeHTTP(w, r)
})
}

82
vendor/github.com/gorilla/context/doc.go generated vendored Normal file
View file

@ -0,0 +1,82 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package context stores values shared during a request lifetime.
For example, a router can set variables extracted from the URL and later
application handlers can access those values, or it can be used to store
sessions values to be saved at the end of a request. There are several
others common uses.
The idea was posted by Brad Fitzpatrick to the go-nuts mailing list:
http://groups.google.com/group/golang-nuts/msg/e2d679d303aa5d53
Here's the basic usage: first define the keys that you will need. The key
type is interface{} so a key can be of any type that supports equality.
Here we define a key using a custom int type to avoid name collisions:
package foo
import (
"github.com/gorilla/context"
)
type key int
const MyKey key = 0
Then set a variable. Variables are bound to an http.Request object, so you
need a request instance to set a value:
context.Set(r, MyKey, "bar")
The application can later access the variable using the same key you provided:
func MyHandler(w http.ResponseWriter, r *http.Request) {
// val is "bar".
val := context.Get(r, foo.MyKey)
// returns ("bar", true)
val, ok := context.GetOk(r, foo.MyKey)
// ...
}
And that's all about the basic usage. We discuss some other ideas below.
Any type can be stored in the context. To enforce a given type, make the key
private and wrap Get() and Set() to accept and return values of a specific
type:
type key int
const mykey key = 0
// GetMyKey returns a value for this package from the request values.
func GetMyKey(r *http.Request) SomeType {
if rv := context.Get(r, mykey); rv != nil {
return rv.(SomeType)
}
return nil
}
// SetMyKey sets a value for this package in the request values.
func SetMyKey(r *http.Request, val SomeType) {
context.Set(r, mykey, val)
}
Variables must be cleared at the end of a request, to remove all values
that were stored. This can be done in an http.Handler, after a request was
served. Just call Clear() passing the request:
context.Clear(r)
...or use ClearHandler(), which conveniently wraps an http.Handler to clear
variables at the end of a request lifetime.
The Routers from the packages gorilla/mux and gorilla/pat call Clear()
so if you are using either of them you don't need to clear the context manually.
*/
package context

8
vendor/github.com/gorilla/mux/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,8 @@
language: go
sudo: false
go:
- 1.3
- 1.4
- 1.5
- tip

27
vendor/github.com/gorilla/mux/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2012 Rodrigo Moraes. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

235
vendor/github.com/gorilla/mux/README.md generated vendored Normal file
View file

@ -0,0 +1,235 @@
mux
===
[![GoDoc](https://godoc.org/github.com/gorilla/mux?status.svg)](https://godoc.org/github.com/gorilla/mux)
[![Build Status](https://travis-ci.org/gorilla/mux.png?branch=master)](https://travis-ci.org/gorilla/mux)
Package gorilla/mux implements a request router and dispatcher.
The name mux stands for "HTTP request multiplexer". Like the standard
http.ServeMux, mux.Router matches incoming requests against a list of
registered routes and calls a handler for the route that matches the URL
or other conditions. The main features are:
* Requests can be matched based on URL host, path, path prefix, schemes,
header and query values, HTTP methods or using custom matchers.
* URL hosts and paths can have variables with an optional regular
expression.
* Registered URLs can be built, or "reversed", which helps maintaining
references to resources.
* Routes can be used as subrouters: nested routes are only tested if the
parent route matches. This is useful to define groups of routes that
share common conditions like a host, a path prefix or other repeated
attributes. As a bonus, this optimizes request matching.
* It implements the http.Handler interface so it is compatible with the
standard http.ServeMux.
Let's start registering a couple of URL paths and handlers:
func main() {
r := mux.NewRouter()
r.HandleFunc("/", HomeHandler)
r.HandleFunc("/products", ProductsHandler)
r.HandleFunc("/articles", ArticlesHandler)
http.Handle("/", r)
}
Here we register three routes mapping URL paths to handlers. This is
equivalent to how http.HandleFunc() works: if an incoming request URL matches
one of the paths, the corresponding handler is called passing
(http.ResponseWriter, *http.Request) as parameters.
Paths can have variables. They are defined using the format {name} or
{name:pattern}. If a regular expression pattern is not defined, the matched
variable will be anything until the next slash. For example:
r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)
The names are used to create a map of route variables which can be retrieved
calling mux.Vars():
vars := mux.Vars(request)
category := vars["category"]
And this is all you need to know about the basic usage. More advanced options
are explained below.
Routes can also be restricted to a domain or subdomain. Just define a host
pattern to be matched. They can also have variables:
r := mux.NewRouter()
// Only matches if domain is "www.example.com".
r.Host("www.example.com")
// Matches a dynamic subdomain.
r.Host("{subdomain:[a-z]+}.domain.com")
There are several other matchers that can be added. To match path prefixes:
r.PathPrefix("/products/")
...or HTTP methods:
r.Methods("GET", "POST")
...or URL schemes:
r.Schemes("https")
...or header values:
r.Headers("X-Requested-With", "XMLHttpRequest")
...or query values:
r.Queries("key", "value")
...or to use a custom matcher function:
r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool {
return r.ProtoMajor == 0
})
...and finally, it is possible to combine several matchers in a single route:
r.HandleFunc("/products", ProductsHandler).
Host("www.example.com").
Methods("GET").
Schemes("http")
Setting the same matching conditions again and again can be boring, so we have
a way to group several routes that share the same requirements.
We call it "subrouting".
For example, let's say we have several URLs that should only match when the
host is `www.example.com`. Create a route for that host and get a "subrouter"
from it:
r := mux.NewRouter()
s := r.Host("www.example.com").Subrouter()
Then register routes in the subrouter:
s.HandleFunc("/products/", ProductsHandler)
s.HandleFunc("/products/{key}", ProductHandler)
s.HandleFunc("/articles/{category}/{id:[0-9]+}"), ArticleHandler)
The three URL paths we registered above will only be tested if the domain is
`www.example.com`, because the subrouter is tested first. This is not
only convenient, but also optimizes request matching. You can create
subrouters combining any attribute matchers accepted by a route.
Subrouters can be used to create domain or path "namespaces": you define
subrouters in a central place and then parts of the app can register its
paths relatively to a given subrouter.
There's one more thing about subroutes. When a subrouter has a path prefix,
the inner routes use it as base for their paths:
r := mux.NewRouter()
s := r.PathPrefix("/products").Subrouter()
// "/products/"
s.HandleFunc("/", ProductsHandler)
// "/products/{key}/"
s.HandleFunc("/{key}/", ProductHandler)
// "/products/{key}/details"
s.HandleFunc("/{key}/details", ProductDetailsHandler)
Now let's see how to build registered URLs.
Routes can be named. All routes that define a name can have their URLs built,
or "reversed". We define a name calling Name() on a route. For example:
r := mux.NewRouter()
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
Name("article")
To build a URL, get the route and call the URL() method, passing a sequence of
key/value pairs for the route variables. For the previous route, we would do:
url, err := r.Get("article").URL("category", "technology", "id", "42")
...and the result will be a url.URL with the following path:
"/articles/technology/42"
This also works for host variables:
r := mux.NewRouter()
r.Host("{subdomain}.domain.com").
Path("/articles/{category}/{id:[0-9]+}").
HandlerFunc(ArticleHandler).
Name("article")
// url.String() will be "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
All variables defined in the route are required, and their values must
conform to the corresponding patterns. These requirements guarantee that a
generated URL will always match a registered route -- the only exception is
for explicitly defined "build-only" routes which never match.
Regex support also exists for matching Headers within a route. For example, we could do:
r.HeadersRegexp("Content-Type", "application/(text|json)")
...and the route will match both requests with a Content-Type of `application/json` as well as
`application/text`
There's also a way to build only the URL host or path for a route:
use the methods URLHost() or URLPath() instead. For the previous route,
we would do:
// "http://news.domain.com/"
host, err := r.Get("article").URLHost("subdomain", "news")
// "/articles/technology/42"
path, err := r.Get("article").URLPath("category", "technology", "id", "42")
And if you use subrouters, host and path defined separately can be built
as well:
r := mux.NewRouter()
s := r.Host("{subdomain}.domain.com").Subrouter()
s.Path("/articles/{category}/{id:[0-9]+}").
HandlerFunc(ArticleHandler).
Name("article")
// "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
## Full Example
Here's a complete, runnable example of a small mux based server:
```go
package main
import (
"net/http"
"github.com/gorilla/mux"
)
func YourHandler(w http.ResponseWriter, r *http.Request) {
w.Write([]byte("Gorilla!\n"))
}
func main() {
r := mux.NewRouter()
// Routes consist of a path and a handler function.
r.HandleFunc("/", YourHandler)
// Bind to a port and pass our router in
http.ListenAndServe(":8000", r)
}
```
## License
BSD licensed. See the LICENSE file for details.

206
vendor/github.com/gorilla/mux/doc.go generated vendored Normal file
View file

@ -0,0 +1,206 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package gorilla/mux implements a request router and dispatcher.
The name mux stands for "HTTP request multiplexer". Like the standard
http.ServeMux, mux.Router matches incoming requests against a list of
registered routes and calls a handler for the route that matches the URL
or other conditions. The main features are:
* Requests can be matched based on URL host, path, path prefix, schemes,
header and query values, HTTP methods or using custom matchers.
* URL hosts and paths can have variables with an optional regular
expression.
* Registered URLs can be built, or "reversed", which helps maintaining
references to resources.
* Routes can be used as subrouters: nested routes are only tested if the
parent route matches. This is useful to define groups of routes that
share common conditions like a host, a path prefix or other repeated
attributes. As a bonus, this optimizes request matching.
* It implements the http.Handler interface so it is compatible with the
standard http.ServeMux.
Let's start registering a couple of URL paths and handlers:
func main() {
r := mux.NewRouter()
r.HandleFunc("/", HomeHandler)
r.HandleFunc("/products", ProductsHandler)
r.HandleFunc("/articles", ArticlesHandler)
http.Handle("/", r)
}
Here we register three routes mapping URL paths to handlers. This is
equivalent to how http.HandleFunc() works: if an incoming request URL matches
one of the paths, the corresponding handler is called passing
(http.ResponseWriter, *http.Request) as parameters.
Paths can have variables. They are defined using the format {name} or
{name:pattern}. If a regular expression pattern is not defined, the matched
variable will be anything until the next slash. For example:
r := mux.NewRouter()
r.HandleFunc("/products/{key}", ProductHandler)
r.HandleFunc("/articles/{category}/", ArticlesCategoryHandler)
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler)
The names are used to create a map of route variables which can be retrieved
calling mux.Vars():
vars := mux.Vars(request)
category := vars["category"]
And this is all you need to know about the basic usage. More advanced options
are explained below.
Routes can also be restricted to a domain or subdomain. Just define a host
pattern to be matched. They can also have variables:
r := mux.NewRouter()
// Only matches if domain is "www.example.com".
r.Host("www.example.com")
// Matches a dynamic subdomain.
r.Host("{subdomain:[a-z]+}.domain.com")
There are several other matchers that can be added. To match path prefixes:
r.PathPrefix("/products/")
...or HTTP methods:
r.Methods("GET", "POST")
...or URL schemes:
r.Schemes("https")
...or header values:
r.Headers("X-Requested-With", "XMLHttpRequest")
...or query values:
r.Queries("key", "value")
...or to use a custom matcher function:
r.MatcherFunc(func(r *http.Request, rm *RouteMatch) bool {
return r.ProtoMajor == 0
})
...and finally, it is possible to combine several matchers in a single route:
r.HandleFunc("/products", ProductsHandler).
Host("www.example.com").
Methods("GET").
Schemes("http")
Setting the same matching conditions again and again can be boring, so we have
a way to group several routes that share the same requirements.
We call it "subrouting".
For example, let's say we have several URLs that should only match when the
host is "www.example.com". Create a route for that host and get a "subrouter"
from it:
r := mux.NewRouter()
s := r.Host("www.example.com").Subrouter()
Then register routes in the subrouter:
s.HandleFunc("/products/", ProductsHandler)
s.HandleFunc("/products/{key}", ProductHandler)
s.HandleFunc("/articles/{category}/{id:[0-9]+}"), ArticleHandler)
The three URL paths we registered above will only be tested if the domain is
"www.example.com", because the subrouter is tested first. This is not
only convenient, but also optimizes request matching. You can create
subrouters combining any attribute matchers accepted by a route.
Subrouters can be used to create domain or path "namespaces": you define
subrouters in a central place and then parts of the app can register its
paths relatively to a given subrouter.
There's one more thing about subroutes. When a subrouter has a path prefix,
the inner routes use it as base for their paths:
r := mux.NewRouter()
s := r.PathPrefix("/products").Subrouter()
// "/products/"
s.HandleFunc("/", ProductsHandler)
// "/products/{key}/"
s.HandleFunc("/{key}/", ProductHandler)
// "/products/{key}/details"
s.HandleFunc("/{key}/details", ProductDetailsHandler)
Now let's see how to build registered URLs.
Routes can be named. All routes that define a name can have their URLs built,
or "reversed". We define a name calling Name() on a route. For example:
r := mux.NewRouter()
r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
Name("article")
To build a URL, get the route and call the URL() method, passing a sequence of
key/value pairs for the route variables. For the previous route, we would do:
url, err := r.Get("article").URL("category", "technology", "id", "42")
...and the result will be a url.URL with the following path:
"/articles/technology/42"
This also works for host variables:
r := mux.NewRouter()
r.Host("{subdomain}.domain.com").
Path("/articles/{category}/{id:[0-9]+}").
HandlerFunc(ArticleHandler).
Name("article")
// url.String() will be "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
All variables defined in the route are required, and their values must
conform to the corresponding patterns. These requirements guarantee that a
generated URL will always match a registered route -- the only exception is
for explicitly defined "build-only" routes which never match.
Regex support also exists for matching Headers within a route. For example, we could do:
r.HeadersRegexp("Content-Type", "application/(text|json)")
...and the route will match both requests with a Content-Type of `application/json` as well as
`application/text`
There's also a way to build only the URL host or path for a route:
use the methods URLHost() or URLPath() instead. For the previous route,
we would do:
// "http://news.domain.com/"
host, err := r.Get("article").URLHost("subdomain", "news")
// "/articles/technology/42"
path, err := r.Get("article").URLPath("category", "technology", "id", "42")
And if you use subrouters, host and path defined separately can be built
as well:
r := mux.NewRouter()
s := r.Host("{subdomain}.domain.com").Subrouter()
s.Path("/articles/{category}/{id:[0-9]+}").
HandlerFunc(ArticleHandler).
Name("article")
// "http://news.domain.com/articles/technology/42"
url, err := r.Get("article").URL("subdomain", "news",
"category", "technology",
"id", "42")
*/
package mux

469
vendor/github.com/gorilla/mux/mux.go generated vendored Normal file
View file

@ -0,0 +1,469 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mux
import (
"errors"
"fmt"
"net/http"
"path"
"regexp"
"github.com/gorilla/context"
)
// NewRouter returns a new router instance.
func NewRouter() *Router {
return &Router{namedRoutes: make(map[string]*Route), KeepContext: false}
}
// Router registers routes to be matched and dispatches a handler.
//
// It implements the http.Handler interface, so it can be registered to serve
// requests:
//
// var router = mux.NewRouter()
//
// func main() {
// http.Handle("/", router)
// }
//
// Or, for Google App Engine, register it in a init() function:
//
// func init() {
// http.Handle("/", router)
// }
//
// This will send all incoming requests to the router.
type Router struct {
// Configurable Handler to be used when no route matches.
NotFoundHandler http.Handler
// Parent route, if this is a subrouter.
parent parentRoute
// Routes to be matched, in order.
routes []*Route
// Routes by name for URL building.
namedRoutes map[string]*Route
// See Router.StrictSlash(). This defines the flag for new routes.
strictSlash bool
// If true, do not clear the request context after handling the request
KeepContext bool
}
// Match matches registered routes against the request.
func (r *Router) Match(req *http.Request, match *RouteMatch) bool {
for _, route := range r.routes {
if route.Match(req, match) {
return true
}
}
return false
}
// ServeHTTP dispatches the handler registered in the matched route.
//
// When there is a match, the route variables can be retrieved calling
// mux.Vars(request).
func (r *Router) ServeHTTP(w http.ResponseWriter, req *http.Request) {
// Clean path to canonical form and redirect.
if p := cleanPath(req.URL.Path); p != req.URL.Path {
// Added 3 lines (Philip Schlump) - It was droping the query string and #whatever from query.
// This matches with fix in go 1.2 r.c. 4 for same problem. Go Issue:
// http://code.google.com/p/go/issues/detail?id=5252
url := *req.URL
url.Path = p
p = url.String()
w.Header().Set("Location", p)
w.WriteHeader(http.StatusMovedPermanently)
return
}
var match RouteMatch
var handler http.Handler
if r.Match(req, &match) {
handler = match.Handler
setVars(req, match.Vars)
setCurrentRoute(req, match.Route)
}
if handler == nil {
handler = r.NotFoundHandler
if handler == nil {
handler = http.NotFoundHandler()
}
}
if !r.KeepContext {
defer context.Clear(req)
}
handler.ServeHTTP(w, req)
}
// Get returns a route registered with the given name.
func (r *Router) Get(name string) *Route {
return r.getNamedRoutes()[name]
}
// GetRoute returns a route registered with the given name. This method
// was renamed to Get() and remains here for backwards compatibility.
func (r *Router) GetRoute(name string) *Route {
return r.getNamedRoutes()[name]
}
// StrictSlash defines the trailing slash behavior for new routes. The initial
// value is false.
//
// When true, if the route path is "/path/", accessing "/path" will redirect
// to the former and vice versa. In other words, your application will always
// see the path as specified in the route.
//
// When false, if the route path is "/path", accessing "/path/" will not match
// this route and vice versa.
//
// Special case: when a route sets a path prefix using the PathPrefix() method,
// strict slash is ignored for that route because the redirect behavior can't
// be determined from a prefix alone. However, any subrouters created from that
// route inherit the original StrictSlash setting.
func (r *Router) StrictSlash(value bool) *Router {
r.strictSlash = value
return r
}
// ----------------------------------------------------------------------------
// parentRoute
// ----------------------------------------------------------------------------
// getNamedRoutes returns the map where named routes are registered.
func (r *Router) getNamedRoutes() map[string]*Route {
if r.namedRoutes == nil {
if r.parent != nil {
r.namedRoutes = r.parent.getNamedRoutes()
} else {
r.namedRoutes = make(map[string]*Route)
}
}
return r.namedRoutes
}
// getRegexpGroup returns regexp definitions from the parent route, if any.
func (r *Router) getRegexpGroup() *routeRegexpGroup {
if r.parent != nil {
return r.parent.getRegexpGroup()
}
return nil
}
func (r *Router) buildVars(m map[string]string) map[string]string {
if r.parent != nil {
m = r.parent.buildVars(m)
}
return m
}
// ----------------------------------------------------------------------------
// Route factories
// ----------------------------------------------------------------------------
// NewRoute registers an empty route.
func (r *Router) NewRoute() *Route {
route := &Route{parent: r, strictSlash: r.strictSlash}
r.routes = append(r.routes, route)
return route
}
// Handle registers a new route with a matcher for the URL path.
// See Route.Path() and Route.Handler().
func (r *Router) Handle(path string, handler http.Handler) *Route {
return r.NewRoute().Path(path).Handler(handler)
}
// HandleFunc registers a new route with a matcher for the URL path.
// See Route.Path() and Route.HandlerFunc().
func (r *Router) HandleFunc(path string, f func(http.ResponseWriter,
*http.Request)) *Route {
return r.NewRoute().Path(path).HandlerFunc(f)
}
// Headers registers a new route with a matcher for request header values.
// See Route.Headers().
func (r *Router) Headers(pairs ...string) *Route {
return r.NewRoute().Headers(pairs...)
}
// Host registers a new route with a matcher for the URL host.
// See Route.Host().
func (r *Router) Host(tpl string) *Route {
return r.NewRoute().Host(tpl)
}
// MatcherFunc registers a new route with a custom matcher function.
// See Route.MatcherFunc().
func (r *Router) MatcherFunc(f MatcherFunc) *Route {
return r.NewRoute().MatcherFunc(f)
}
// Methods registers a new route with a matcher for HTTP methods.
// See Route.Methods().
func (r *Router) Methods(methods ...string) *Route {
return r.NewRoute().Methods(methods...)
}
// Path registers a new route with a matcher for the URL path.
// See Route.Path().
func (r *Router) Path(tpl string) *Route {
return r.NewRoute().Path(tpl)
}
// PathPrefix registers a new route with a matcher for the URL path prefix.
// See Route.PathPrefix().
func (r *Router) PathPrefix(tpl string) *Route {
return r.NewRoute().PathPrefix(tpl)
}
// Queries registers a new route with a matcher for URL query values.
// See Route.Queries().
func (r *Router) Queries(pairs ...string) *Route {
return r.NewRoute().Queries(pairs...)
}
// Schemes registers a new route with a matcher for URL schemes.
// See Route.Schemes().
func (r *Router) Schemes(schemes ...string) *Route {
return r.NewRoute().Schemes(schemes...)
}
// BuildVars registers a new route with a custom function for modifying
// route variables before building a URL.
func (r *Router) BuildVarsFunc(f BuildVarsFunc) *Route {
return r.NewRoute().BuildVarsFunc(f)
}
// Walk walks the router and all its sub-routers, calling walkFn for each route
// in the tree. The routes are walked in the order they were added. Sub-routers
// are explored depth-first.
func (r *Router) Walk(walkFn WalkFunc) error {
return r.walk(walkFn, []*Route{})
}
// SkipRouter is used as a return value from WalkFuncs to indicate that the
// router that walk is about to descend down to should be skipped.
var SkipRouter = errors.New("skip this router")
// WalkFunc is the type of the function called for each route visited by Walk.
// At every invocation, it is given the current route, and the current router,
// and a list of ancestor routes that lead to the current route.
type WalkFunc func(route *Route, router *Router, ancestors []*Route) error
func (r *Router) walk(walkFn WalkFunc, ancestors []*Route) error {
for _, t := range r.routes {
if t.regexp == nil || t.regexp.path == nil || t.regexp.path.template == "" {
continue
}
err := walkFn(t, r, ancestors)
if err == SkipRouter {
continue
}
for _, sr := range t.matchers {
if h, ok := sr.(*Router); ok {
err := h.walk(walkFn, ancestors)
if err != nil {
return err
}
}
}
if h, ok := t.handler.(*Router); ok {
ancestors = append(ancestors, t)
err := h.walk(walkFn, ancestors)
if err != nil {
return err
}
ancestors = ancestors[:len(ancestors)-1]
}
}
return nil
}
// ----------------------------------------------------------------------------
// Context
// ----------------------------------------------------------------------------
// RouteMatch stores information about a matched route.
type RouteMatch struct {
Route *Route
Handler http.Handler
Vars map[string]string
}
type contextKey int
const (
varsKey contextKey = iota
routeKey
)
// Vars returns the route variables for the current request, if any.
func Vars(r *http.Request) map[string]string {
if rv := context.Get(r, varsKey); rv != nil {
return rv.(map[string]string)
}
return nil
}
// CurrentRoute returns the matched route for the current request, if any.
// This only works when called inside the handler of the matched route
// because the matched route is stored in the request context which is cleared
// after the handler returns, unless the KeepContext option is set on the
// Router.
func CurrentRoute(r *http.Request) *Route {
if rv := context.Get(r, routeKey); rv != nil {
return rv.(*Route)
}
return nil
}
func setVars(r *http.Request, val interface{}) {
context.Set(r, varsKey, val)
}
func setCurrentRoute(r *http.Request, val interface{}) {
context.Set(r, routeKey, val)
}
// ----------------------------------------------------------------------------
// Helpers
// ----------------------------------------------------------------------------
// cleanPath returns the canonical path for p, eliminating . and .. elements.
// Borrowed from the net/http package.
func cleanPath(p string) string {
if p == "" {
return "/"
}
if p[0] != '/' {
p = "/" + p
}
np := path.Clean(p)
// path.Clean removes trailing slash except for root;
// put the trailing slash back if necessary.
if p[len(p)-1] == '/' && np != "/" {
np += "/"
}
return np
}
// uniqueVars returns an error if two slices contain duplicated strings.
func uniqueVars(s1, s2 []string) error {
for _, v1 := range s1 {
for _, v2 := range s2 {
if v1 == v2 {
return fmt.Errorf("mux: duplicated route variable %q", v2)
}
}
}
return nil
}
func checkPairs(pairs ...string) (int, error) {
length := len(pairs)
if length%2 != 0 {
return length, fmt.Errorf(
"mux: number of parameters must be multiple of 2, got %v", pairs)
}
return length, nil
}
// mapFromPairs converts variadic string parameters to a string map.
func mapFromPairsToString(pairs ...string) (map[string]string, error) {
length, err := checkPairs(pairs...)
if err != nil {
return nil, err
}
m := make(map[string]string, length/2)
for i := 0; i < length; i += 2 {
m[pairs[i]] = pairs[i+1]
}
return m, nil
}
func mapFromPairsToRegex(pairs ...string) (map[string]*regexp.Regexp, error) {
length, err := checkPairs(pairs...)
if err != nil {
return nil, err
}
m := make(map[string]*regexp.Regexp, length/2)
for i := 0; i < length; i += 2 {
regex, err := regexp.Compile(pairs[i+1])
if err != nil {
return nil, err
}
m[pairs[i]] = regex
}
return m, nil
}
// matchInArray returns true if the given string value is in the array.
func matchInArray(arr []string, value string) bool {
for _, v := range arr {
if v == value {
return true
}
}
return false
}
// matchMapWithString returns true if the given key/value pairs exist in a given map.
func matchMapWithString(toCheck map[string]string, toMatch map[string][]string, canonicalKey bool) bool {
for k, v := range toCheck {
// Check if key exists.
if canonicalKey {
k = http.CanonicalHeaderKey(k)
}
if values := toMatch[k]; values == nil {
return false
} else if v != "" {
// If value was defined as an empty string we only check that the
// key exists. Otherwise we also check for equality.
valueExists := false
for _, value := range values {
if v == value {
valueExists = true
break
}
}
if !valueExists {
return false
}
}
}
return true
}
// matchMapWithRegex returns true if the given key/value pairs exist in a given map compiled against
// the given regex
func matchMapWithRegex(toCheck map[string]*regexp.Regexp, toMatch map[string][]string, canonicalKey bool) bool {
for k, v := range toCheck {
// Check if key exists.
if canonicalKey {
k = http.CanonicalHeaderKey(k)
}
if values := toMatch[k]; values == nil {
return false
} else if v != nil {
// If value was defined as an empty string we only check that the
// key exists. Otherwise we also check for equality.
valueExists := false
for _, value := range values {
if v.MatchString(value) {
valueExists = true
break
}
}
if !valueExists {
return false
}
}
}
return true
}

317
vendor/github.com/gorilla/mux/regexp.go generated vendored Normal file
View file

@ -0,0 +1,317 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mux
import (
"bytes"
"fmt"
"net/http"
"net/url"
"regexp"
"strconv"
"strings"
)
// newRouteRegexp parses a route template and returns a routeRegexp,
// used to match a host, a path or a query string.
//
// It will extract named variables, assemble a regexp to be matched, create
// a "reverse" template to build URLs and compile regexps to validate variable
// values used in URL building.
//
// Previously we accepted only Python-like identifiers for variable
// names ([a-zA-Z_][a-zA-Z0-9_]*), but currently the only restriction is that
// name and pattern can't be empty, and names can't contain a colon.
func newRouteRegexp(tpl string, matchHost, matchPrefix, matchQuery, strictSlash bool) (*routeRegexp, error) {
// Check if it is well-formed.
idxs, errBraces := braceIndices(tpl)
if errBraces != nil {
return nil, errBraces
}
// Backup the original.
template := tpl
// Now let's parse it.
defaultPattern := "[^/]+"
if matchQuery {
defaultPattern = "[^?&]*"
} else if matchHost {
defaultPattern = "[^.]+"
matchPrefix = false
}
// Only match strict slash if not matching
if matchPrefix || matchHost || matchQuery {
strictSlash = false
}
// Set a flag for strictSlash.
endSlash := false
if strictSlash && strings.HasSuffix(tpl, "/") {
tpl = tpl[:len(tpl)-1]
endSlash = true
}
varsN := make([]string, len(idxs)/2)
varsR := make([]*regexp.Regexp, len(idxs)/2)
pattern := bytes.NewBufferString("")
pattern.WriteByte('^')
reverse := bytes.NewBufferString("")
var end int
var err error
for i := 0; i < len(idxs); i += 2 {
// Set all values we are interested in.
raw := tpl[end:idxs[i]]
end = idxs[i+1]
parts := strings.SplitN(tpl[idxs[i]+1:end-1], ":", 2)
name := parts[0]
patt := defaultPattern
if len(parts) == 2 {
patt = parts[1]
}
// Name or pattern can't be empty.
if name == "" || patt == "" {
return nil, fmt.Errorf("mux: missing name or pattern in %q",
tpl[idxs[i]:end])
}
// Build the regexp pattern.
varIdx := i / 2
fmt.Fprintf(pattern, "%s(?P<%s>%s)", regexp.QuoteMeta(raw), varGroupName(varIdx), patt)
// Build the reverse template.
fmt.Fprintf(reverse, "%s%%s", raw)
// Append variable name and compiled pattern.
varsN[varIdx] = name
varsR[varIdx], err = regexp.Compile(fmt.Sprintf("^%s$", patt))
if err != nil {
return nil, err
}
}
// Add the remaining.
raw := tpl[end:]
pattern.WriteString(regexp.QuoteMeta(raw))
if strictSlash {
pattern.WriteString("[/]?")
}
if matchQuery {
// Add the default pattern if the query value is empty
if queryVal := strings.SplitN(template, "=", 2)[1]; queryVal == "" {
pattern.WriteString(defaultPattern)
}
}
if !matchPrefix {
pattern.WriteByte('$')
}
reverse.WriteString(raw)
if endSlash {
reverse.WriteByte('/')
}
// Compile full regexp.
reg, errCompile := regexp.Compile(pattern.String())
if errCompile != nil {
return nil, errCompile
}
// Done!
return &routeRegexp{
template: template,
matchHost: matchHost,
matchQuery: matchQuery,
strictSlash: strictSlash,
regexp: reg,
reverse: reverse.String(),
varsN: varsN,
varsR: varsR,
}, nil
}
// routeRegexp stores a regexp to match a host or path and information to
// collect and validate route variables.
type routeRegexp struct {
// The unmodified template.
template string
// True for host match, false for path or query string match.
matchHost bool
// True for query string match, false for path and host match.
matchQuery bool
// The strictSlash value defined on the route, but disabled if PathPrefix was used.
strictSlash bool
// Expanded regexp.
regexp *regexp.Regexp
// Reverse template.
reverse string
// Variable names.
varsN []string
// Variable regexps (validators).
varsR []*regexp.Regexp
}
// Match matches the regexp against the URL host or path.
func (r *routeRegexp) Match(req *http.Request, match *RouteMatch) bool {
if !r.matchHost {
if r.matchQuery {
return r.matchQueryString(req)
} else {
return r.regexp.MatchString(req.URL.Path)
}
}
return r.regexp.MatchString(getHost(req))
}
// url builds a URL part using the given values.
func (r *routeRegexp) url(values map[string]string) (string, error) {
urlValues := make([]interface{}, len(r.varsN))
for k, v := range r.varsN {
value, ok := values[v]
if !ok {
return "", fmt.Errorf("mux: missing route variable %q", v)
}
urlValues[k] = value
}
rv := fmt.Sprintf(r.reverse, urlValues...)
if !r.regexp.MatchString(rv) {
// The URL is checked against the full regexp, instead of checking
// individual variables. This is faster but to provide a good error
// message, we check individual regexps if the URL doesn't match.
for k, v := range r.varsN {
if !r.varsR[k].MatchString(values[v]) {
return "", fmt.Errorf(
"mux: variable %q doesn't match, expected %q", values[v],
r.varsR[k].String())
}
}
}
return rv, nil
}
// getUrlQuery returns a single query parameter from a request URL.
// For a URL with foo=bar&baz=ding, we return only the relevant key
// value pair for the routeRegexp.
func (r *routeRegexp) getUrlQuery(req *http.Request) string {
if !r.matchQuery {
return ""
}
templateKey := strings.SplitN(r.template, "=", 2)[0]
for key, vals := range req.URL.Query() {
if key == templateKey && len(vals) > 0 {
return key + "=" + vals[0]
}
}
return ""
}
func (r *routeRegexp) matchQueryString(req *http.Request) bool {
return r.regexp.MatchString(r.getUrlQuery(req))
}
// braceIndices returns the first level curly brace indices from a string.
// It returns an error in case of unbalanced braces.
func braceIndices(s string) ([]int, error) {
var level, idx int
idxs := make([]int, 0)
for i := 0; i < len(s); i++ {
switch s[i] {
case '{':
if level++; level == 1 {
idx = i
}
case '}':
if level--; level == 0 {
idxs = append(idxs, idx, i+1)
} else if level < 0 {
return nil, fmt.Errorf("mux: unbalanced braces in %q", s)
}
}
}
if level != 0 {
return nil, fmt.Errorf("mux: unbalanced braces in %q", s)
}
return idxs, nil
}
// varGroupName builds a capturing group name for the indexed variable.
func varGroupName(idx int) string {
return "v" + strconv.Itoa(idx)
}
// ----------------------------------------------------------------------------
// routeRegexpGroup
// ----------------------------------------------------------------------------
// routeRegexpGroup groups the route matchers that carry variables.
type routeRegexpGroup struct {
host *routeRegexp
path *routeRegexp
queries []*routeRegexp
}
// setMatch extracts the variables from the URL once a route matches.
func (v *routeRegexpGroup) setMatch(req *http.Request, m *RouteMatch, r *Route) {
// Store host variables.
if v.host != nil {
hostVars := v.host.regexp.FindStringSubmatch(getHost(req))
if hostVars != nil {
subexpNames := v.host.regexp.SubexpNames()
varName := 0
for i, name := range subexpNames[1:] {
if name != "" && name == varGroupName(varName) {
m.Vars[v.host.varsN[varName]] = hostVars[i+1]
varName++
}
}
}
}
// Store path variables.
if v.path != nil {
pathVars := v.path.regexp.FindStringSubmatch(req.URL.Path)
if pathVars != nil {
subexpNames := v.path.regexp.SubexpNames()
varName := 0
for i, name := range subexpNames[1:] {
if name != "" && name == varGroupName(varName) {
m.Vars[v.path.varsN[varName]] = pathVars[i+1]
varName++
}
}
// Check if we should redirect.
if v.path.strictSlash {
p1 := strings.HasSuffix(req.URL.Path, "/")
p2 := strings.HasSuffix(v.path.template, "/")
if p1 != p2 {
u, _ := url.Parse(req.URL.String())
if p1 {
u.Path = u.Path[:len(u.Path)-1]
} else {
u.Path += "/"
}
m.Handler = http.RedirectHandler(u.String(), 301)
}
}
}
}
// Store query string variables.
for _, q := range v.queries {
queryVars := q.regexp.FindStringSubmatch(q.getUrlQuery(req))
if queryVars != nil {
subexpNames := q.regexp.SubexpNames()
varName := 0
for i, name := range subexpNames[1:] {
if name != "" && name == varGroupName(varName) {
m.Vars[q.varsN[varName]] = queryVars[i+1]
varName++
}
}
}
}
}
// getHost tries its best to return the request host.
func getHost(r *http.Request) string {
if r.URL.IsAbs() {
return r.URL.Host
}
host := r.Host
// Slice off any port information.
if i := strings.Index(host, ":"); i != -1 {
host = host[:i]
}
return host
}

595
vendor/github.com/gorilla/mux/route.go generated vendored Normal file
View file

@ -0,0 +1,595 @@
// Copyright 2012 The Gorilla Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mux
import (
"errors"
"fmt"
"net/http"
"net/url"
"regexp"
"strings"
)
// Route stores information to match a request and build URLs.
type Route struct {
// Parent where the route was registered (a Router).
parent parentRoute
// Request handler for the route.
handler http.Handler
// List of matchers.
matchers []matcher
// Manager for the variables from host and path.
regexp *routeRegexpGroup
// If true, when the path pattern is "/path/", accessing "/path" will
// redirect to the former and vice versa.
strictSlash bool
// If true, this route never matches: it is only used to build URLs.
buildOnly bool
// The name used to build URLs.
name string
// Error resulted from building a route.
err error
buildVarsFunc BuildVarsFunc
}
// Match matches the route against the request.
func (r *Route) Match(req *http.Request, match *RouteMatch) bool {
if r.buildOnly || r.err != nil {
return false
}
// Match everything.
for _, m := range r.matchers {
if matched := m.Match(req, match); !matched {
return false
}
}
// Yay, we have a match. Let's collect some info about it.
if match.Route == nil {
match.Route = r
}
if match.Handler == nil {
match.Handler = r.handler
}
if match.Vars == nil {
match.Vars = make(map[string]string)
}
// Set variables.
if r.regexp != nil {
r.regexp.setMatch(req, match, r)
}
return true
}
// ----------------------------------------------------------------------------
// Route attributes
// ----------------------------------------------------------------------------
// GetError returns an error resulted from building the route, if any.
func (r *Route) GetError() error {
return r.err
}
// BuildOnly sets the route to never match: it is only used to build URLs.
func (r *Route) BuildOnly() *Route {
r.buildOnly = true
return r
}
// Handler --------------------------------------------------------------------
// Handler sets a handler for the route.
func (r *Route) Handler(handler http.Handler) *Route {
if r.err == nil {
r.handler = handler
}
return r
}
// HandlerFunc sets a handler function for the route.
func (r *Route) HandlerFunc(f func(http.ResponseWriter, *http.Request)) *Route {
return r.Handler(http.HandlerFunc(f))
}
// GetHandler returns the handler for the route, if any.
func (r *Route) GetHandler() http.Handler {
return r.handler
}
// Name -----------------------------------------------------------------------
// Name sets the name for the route, used to build URLs.
// If the name was registered already it will be overwritten.
func (r *Route) Name(name string) *Route {
if r.name != "" {
r.err = fmt.Errorf("mux: route already has name %q, can't set %q",
r.name, name)
}
if r.err == nil {
r.name = name
r.getNamedRoutes()[name] = r
}
return r
}
// GetName returns the name for the route, if any.
func (r *Route) GetName() string {
return r.name
}
// ----------------------------------------------------------------------------
// Matchers
// ----------------------------------------------------------------------------
// matcher types try to match a request.
type matcher interface {
Match(*http.Request, *RouteMatch) bool
}
// addMatcher adds a matcher to the route.
func (r *Route) addMatcher(m matcher) *Route {
if r.err == nil {
r.matchers = append(r.matchers, m)
}
return r
}
// addRegexpMatcher adds a host or path matcher and builder to a route.
func (r *Route) addRegexpMatcher(tpl string, matchHost, matchPrefix, matchQuery bool) error {
if r.err != nil {
return r.err
}
r.regexp = r.getRegexpGroup()
if !matchHost && !matchQuery {
if len(tpl) == 0 || tpl[0] != '/' {
return fmt.Errorf("mux: path must start with a slash, got %q", tpl)
}
if r.regexp.path != nil {
tpl = strings.TrimRight(r.regexp.path.template, "/") + tpl
}
}
rr, err := newRouteRegexp(tpl, matchHost, matchPrefix, matchQuery, r.strictSlash)
if err != nil {
return err
}
for _, q := range r.regexp.queries {
if err = uniqueVars(rr.varsN, q.varsN); err != nil {
return err
}
}
if matchHost {
if r.regexp.path != nil {
if err = uniqueVars(rr.varsN, r.regexp.path.varsN); err != nil {
return err
}
}
r.regexp.host = rr
} else {
if r.regexp.host != nil {
if err = uniqueVars(rr.varsN, r.regexp.host.varsN); err != nil {
return err
}
}
if matchQuery {
r.regexp.queries = append(r.regexp.queries, rr)
} else {
r.regexp.path = rr
}
}
r.addMatcher(rr)
return nil
}
// Headers --------------------------------------------------------------------
// headerMatcher matches the request against header values.
type headerMatcher map[string]string
func (m headerMatcher) Match(r *http.Request, match *RouteMatch) bool {
return matchMapWithString(m, r.Header, true)
}
// Headers adds a matcher for request header values.
// It accepts a sequence of key/value pairs to be matched. For example:
//
// r := mux.NewRouter()
// r.Headers("Content-Type", "application/json",
// "X-Requested-With", "XMLHttpRequest")
//
// The above route will only match if both request header values match.
// If the value is an empty string, it will match any value if the key is set.
func (r *Route) Headers(pairs ...string) *Route {
if r.err == nil {
var headers map[string]string
headers, r.err = mapFromPairsToString(pairs...)
return r.addMatcher(headerMatcher(headers))
}
return r
}
// headerRegexMatcher matches the request against the route given a regex for the header
type headerRegexMatcher map[string]*regexp.Regexp
func (m headerRegexMatcher) Match(r *http.Request, match *RouteMatch) bool {
return matchMapWithRegex(m, r.Header, true)
}
// Regular expressions can be used with headers as well.
// It accepts a sequence of key/value pairs, where the value has regex support. For example
// r := mux.NewRouter()
// r.HeadersRegexp("Content-Type", "application/(text|json)",
// "X-Requested-With", "XMLHttpRequest")
//
// The above route will only match if both the request header matches both regular expressions.
// It the value is an empty string, it will match any value if the key is set.
func (r *Route) HeadersRegexp(pairs ...string) *Route {
if r.err == nil {
var headers map[string]*regexp.Regexp
headers, r.err = mapFromPairsToRegex(pairs...)
return r.addMatcher(headerRegexMatcher(headers))
}
return r
}
// Host -----------------------------------------------------------------------
// Host adds a matcher for the URL host.
// It accepts a template with zero or more URL variables enclosed by {}.
// Variables can define an optional regexp pattern to be matched:
//
// - {name} matches anything until the next dot.
//
// - {name:pattern} matches the given regexp pattern.
//
// For example:
//
// r := mux.NewRouter()
// r.Host("www.example.com")
// r.Host("{subdomain}.domain.com")
// r.Host("{subdomain:[a-z]+}.domain.com")
//
// Variable names must be unique in a given route. They can be retrieved
// calling mux.Vars(request).
func (r *Route) Host(tpl string) *Route {
r.err = r.addRegexpMatcher(tpl, true, false, false)
return r
}
// MatcherFunc ----------------------------------------------------------------
// MatcherFunc is the function signature used by custom matchers.
type MatcherFunc func(*http.Request, *RouteMatch) bool
func (m MatcherFunc) Match(r *http.Request, match *RouteMatch) bool {
return m(r, match)
}
// MatcherFunc adds a custom function to be used as request matcher.
func (r *Route) MatcherFunc(f MatcherFunc) *Route {
return r.addMatcher(f)
}
// Methods --------------------------------------------------------------------
// methodMatcher matches the request against HTTP methods.
type methodMatcher []string
func (m methodMatcher) Match(r *http.Request, match *RouteMatch) bool {
return matchInArray(m, r.Method)
}
// Methods adds a matcher for HTTP methods.
// It accepts a sequence of one or more methods to be matched, e.g.:
// "GET", "POST", "PUT".
func (r *Route) Methods(methods ...string) *Route {
for k, v := range methods {
methods[k] = strings.ToUpper(v)
}
return r.addMatcher(methodMatcher(methods))
}
// Path -----------------------------------------------------------------------
// Path adds a matcher for the URL path.
// It accepts a template with zero or more URL variables enclosed by {}. The
// template must start with a "/".
// Variables can define an optional regexp pattern to be matched:
//
// - {name} matches anything until the next slash.
//
// - {name:pattern} matches the given regexp pattern.
//
// For example:
//
// r := mux.NewRouter()
// r.Path("/products/").Handler(ProductsHandler)
// r.Path("/products/{key}").Handler(ProductsHandler)
// r.Path("/articles/{category}/{id:[0-9]+}").
// Handler(ArticleHandler)
//
// Variable names must be unique in a given route. They can be retrieved
// calling mux.Vars(request).
func (r *Route) Path(tpl string) *Route {
r.err = r.addRegexpMatcher(tpl, false, false, false)
return r
}
// PathPrefix -----------------------------------------------------------------
// PathPrefix adds a matcher for the URL path prefix. This matches if the given
// template is a prefix of the full URL path. See Route.Path() for details on
// the tpl argument.
//
// Note that it does not treat slashes specially ("/foobar/" will be matched by
// the prefix "/foo") so you may want to use a trailing slash here.
//
// Also note that the setting of Router.StrictSlash() has no effect on routes
// with a PathPrefix matcher.
func (r *Route) PathPrefix(tpl string) *Route {
r.err = r.addRegexpMatcher(tpl, false, true, false)
return r
}
// Query ----------------------------------------------------------------------
// Queries adds a matcher for URL query values.
// It accepts a sequence of key/value pairs. Values may define variables.
// For example:
//
// r := mux.NewRouter()
// r.Queries("foo", "bar", "id", "{id:[0-9]+}")
//
// The above route will only match if the URL contains the defined queries
// values, e.g.: ?foo=bar&id=42.
//
// It the value is an empty string, it will match any value if the key is set.
//
// Variables can define an optional regexp pattern to be matched:
//
// - {name} matches anything until the next slash.
//
// - {name:pattern} matches the given regexp pattern.
func (r *Route) Queries(pairs ...string) *Route {
length := len(pairs)
if length%2 != 0 {
r.err = fmt.Errorf(
"mux: number of parameters must be multiple of 2, got %v", pairs)
return nil
}
for i := 0; i < length; i += 2 {
if r.err = r.addRegexpMatcher(pairs[i]+"="+pairs[i+1], false, false, true); r.err != nil {
return r
}
}
return r
}
// Schemes --------------------------------------------------------------------
// schemeMatcher matches the request against URL schemes.
type schemeMatcher []string
func (m schemeMatcher) Match(r *http.Request, match *RouteMatch) bool {
return matchInArray(m, r.URL.Scheme)
}
// Schemes adds a matcher for URL schemes.
// It accepts a sequence of schemes to be matched, e.g.: "http", "https".
func (r *Route) Schemes(schemes ...string) *Route {
for k, v := range schemes {
schemes[k] = strings.ToLower(v)
}
return r.addMatcher(schemeMatcher(schemes))
}
// BuildVarsFunc --------------------------------------------------------------
// BuildVarsFunc is the function signature used by custom build variable
// functions (which can modify route variables before a route's URL is built).
type BuildVarsFunc func(map[string]string) map[string]string
// BuildVarsFunc adds a custom function to be used to modify build variables
// before a route's URL is built.
func (r *Route) BuildVarsFunc(f BuildVarsFunc) *Route {
r.buildVarsFunc = f
return r
}
// Subrouter ------------------------------------------------------------------
// Subrouter creates a subrouter for the route.
//
// It will test the inner routes only if the parent route matched. For example:
//
// r := mux.NewRouter()
// s := r.Host("www.example.com").Subrouter()
// s.HandleFunc("/products/", ProductsHandler)
// s.HandleFunc("/products/{key}", ProductHandler)
// s.HandleFunc("/articles/{category}/{id:[0-9]+}"), ArticleHandler)
//
// Here, the routes registered in the subrouter won't be tested if the host
// doesn't match.
func (r *Route) Subrouter() *Router {
router := &Router{parent: r, strictSlash: r.strictSlash}
r.addMatcher(router)
return router
}
// ----------------------------------------------------------------------------
// URL building
// ----------------------------------------------------------------------------
// URL builds a URL for the route.
//
// It accepts a sequence of key/value pairs for the route variables. For
// example, given this route:
//
// r := mux.NewRouter()
// r.HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
// Name("article")
//
// ...a URL for it can be built using:
//
// url, err := r.Get("article").URL("category", "technology", "id", "42")
//
// ...which will return an url.URL with the following path:
//
// "/articles/technology/42"
//
// This also works for host variables:
//
// r := mux.NewRouter()
// r.Host("{subdomain}.domain.com").
// HandleFunc("/articles/{category}/{id:[0-9]+}", ArticleHandler).
// Name("article")
//
// // url.String() will be "http://news.domain.com/articles/technology/42"
// url, err := r.Get("article").URL("subdomain", "news",
// "category", "technology",
// "id", "42")
//
// All variables defined in the route are required, and their values must
// conform to the corresponding patterns.
func (r *Route) URL(pairs ...string) (*url.URL, error) {
if r.err != nil {
return nil, r.err
}
if r.regexp == nil {
return nil, errors.New("mux: route doesn't have a host or path")
}
values, err := r.prepareVars(pairs...)
if err != nil {
return nil, err
}
var scheme, host, path string
if r.regexp.host != nil {
// Set a default scheme.
scheme = "http"
if host, err = r.regexp.host.url(values); err != nil {
return nil, err
}
}
if r.regexp.path != nil {
if path, err = r.regexp.path.url(values); err != nil {
return nil, err
}
}
return &url.URL{
Scheme: scheme,
Host: host,
Path: path,
}, nil
}
// URLHost builds the host part of the URL for a route. See Route.URL().
//
// The route must have a host defined.
func (r *Route) URLHost(pairs ...string) (*url.URL, error) {
if r.err != nil {
return nil, r.err
}
if r.regexp == nil || r.regexp.host == nil {
return nil, errors.New("mux: route doesn't have a host")
}
values, err := r.prepareVars(pairs...)
if err != nil {
return nil, err
}
host, err := r.regexp.host.url(values)
if err != nil {
return nil, err
}
return &url.URL{
Scheme: "http",
Host: host,
}, nil
}
// URLPath builds the path part of the URL for a route. See Route.URL().
//
// The route must have a path defined.
func (r *Route) URLPath(pairs ...string) (*url.URL, error) {
if r.err != nil {
return nil, r.err
}
if r.regexp == nil || r.regexp.path == nil {
return nil, errors.New("mux: route doesn't have a path")
}
values, err := r.prepareVars(pairs...)
if err != nil {
return nil, err
}
path, err := r.regexp.path.url(values)
if err != nil {
return nil, err
}
return &url.URL{
Path: path,
}, nil
}
// prepareVars converts the route variable pairs into a map. If the route has a
// BuildVarsFunc, it is invoked.
func (r *Route) prepareVars(pairs ...string) (map[string]string, error) {
m, err := mapFromPairsToString(pairs...)
if err != nil {
return nil, err
}
return r.buildVars(m), nil
}
func (r *Route) buildVars(m map[string]string) map[string]string {
if r.parent != nil {
m = r.parent.buildVars(m)
}
if r.buildVarsFunc != nil {
m = r.buildVarsFunc(m)
}
return m
}
// ----------------------------------------------------------------------------
// parentRoute
// ----------------------------------------------------------------------------
// parentRoute allows routes to know about parent host and path definitions.
type parentRoute interface {
getNamedRoutes() map[string]*Route
getRegexpGroup() *routeRegexpGroup
buildVars(map[string]string) map[string]string
}
// getNamedRoutes returns the map where named routes are registered.
func (r *Route) getNamedRoutes() map[string]*Route {
if r.parent == nil {
// During tests router is not always set.
r.parent = NewRouter()
}
return r.parent.getNamedRoutes()
}
// getRegexpGroup returns regexp definitions from this route.
func (r *Route) getRegexpGroup() *routeRegexpGroup {
if r.regexp == nil {
if r.parent == nil {
// During tests router is not always set.
r.parent = NewRouter()
}
regexp := r.parent.getRegexpGroup()
if regexp == nil {
r.regexp = new(routeRegexpGroup)
} else {
// Copy.
r.regexp = &routeRegexpGroup{
host: regexp.host,
path: regexp.path,
queries: regexp.queries,
}
}
}
return r.regexp
}

17
vendor/github.com/spf13/pflag/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,17 @@
sudo: false
language: go
go:
- 1.5
- 1.6
- tip
install:
- go get github.com/golang/lint/golint
- export PATH=$GOPATH/bin:$PATH
- go install ./...
script:
- verify/all.sh -v
- go test ./...

28
vendor/github.com/spf13/pflag/LICENSE generated vendored Normal file
View file

@ -0,0 +1,28 @@
Copyright (c) 2012 Alex Ogier. All rights reserved.
Copyright (c) 2012 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

275
vendor/github.com/spf13/pflag/README.md generated vendored Normal file
View file

@ -0,0 +1,275 @@
[![Build Status](https://travis-ci.org/spf13/pflag.svg?branch=master)](https://travis-ci.org/spf13/pflag)
## Description
pflag is a drop-in replacement for Go's flag package, implementing
POSIX/GNU-style --flags.
pflag is compatible with the [GNU extensions to the POSIX recommendations
for command-line options][1]. For a more precise description, see the
"Command-line flag syntax" section below.
[1]: http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html
pflag is available under the same style of BSD license as the Go language,
which can be found in the LICENSE file.
## Installation
pflag is available using the standard `go get` command.
Install by running:
go get github.com/spf13/pflag
Run tests by running:
go test github.com/spf13/pflag
## Usage
pflag is a drop-in replacement of Go's native flag package. If you import
pflag under the name "flag" then all code should continue to function
with no changes.
``` go
import flag "github.com/spf13/pflag"
```
There is one exception to this: if you directly instantiate the Flag struct
there is one more field "Shorthand" that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.
Define flags using flag.String(), Bool(), Int(), etc.
This declares an integer flag, -flagname, stored in the pointer ip, with type *int.
``` go
var ip *int = flag.Int("flagname", 1234, "help message for flagname")
```
If you like, you can bind the flag to a variable using the Var() functions.
``` go
var flagvar int
func init() {
flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}
```
Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by
``` go
flag.Var(&flagVal, "name", "help message for flagname")
```
For such flags, the default value is just the initial value of the variable.
After all flags are defined, call
``` go
flag.Parse()
```
to parse the command line into the defined flags.
Flags may then be used directly. If you're using the flags themselves,
they are all pointers; if you bind to variables, they're values.
``` go
fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)
```
There are helpers function to get values later if you have the FlagSet but
it was difficult to keep up with all of the flag pointers in your code.
If you have a pflag.FlagSet with a flag called 'flagname' of type int you
can use GetInt() to get the int value. But notice that 'flagname' must exist
and it must be an int. GetString("flagname") will fail.
``` go
i, err := flagset.GetInt("flagname")
```
After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.
The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
'P' to the name of any function that defines a flag.
``` go
var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
flag.BoolVarP("boolname", "b", true, "help message")
}
flag.VarP(&flagVar, "varname", "v", 1234, "help message")
```
Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.
The default set of command-line flags is controlled by
top-level functions. The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.
## Setting no option default values for flags
After you create a flag it is possible to set the pflag.NoOptDefVal for
the given flag. Doing this changes the meaning of the flag slightly. If
a flag has a NoOptDefVal and the flag is set on the command line without
an option the flag will be set to the NoOptDefVal. For example given:
``` go
var ip = flag.IntP("flagname", "f", 1234, "help message")
flag.Lookup("flagname").NoOptDefVal = "4321"
```
Would result in something like
| Parsed Arguments | Resulting Value |
| ------------- | ------------- |
| --flagname=1357 | ip=1357 |
| --flagname | ip=4321 |
| [nothing] | ip=1234 |
## Command line flag syntax
```
--flag // boolean flags, or flags with no option default values
--flag x // only on flags without a default value
--flag=x
```
Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags
or a flag with a default value
```
// boolean or flags where the 'no option default value' is set
-f
-f=true
-abc
but
-b true is INVALID
// non-boolean and flags without a 'no option default value'
-n 1234
-n=1234
-n1234
// mixed
-abcs "hello"
-absd="hello"
-abcs1234
```
Flag parsing stops after the terminator "--". Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.
Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.
## Mutating or "Normalizing" Flag names
It is possible to set a custom flag name 'normalization function.' It allows flag names to be mutated both when created in the code and when used on the command line to some 'normalized' form. The 'normalized' form is used for comparison. Two examples of using the custom normalization func follow.
**Example #1**: You want -, _, and . in flags to compare the same. aka --my-flag == --my_flag == --my.flag
``` go
func wordSepNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
from := []string{"-", "_"}
to := "."
for _, sep := range from {
name = strings.Replace(name, sep, to, -1)
}
return pflag.NormalizedName(name)
}
myFlagSet.SetNormalizeFunc(wordSepNormalizeFunc)
```
**Example #2**: You want to alias two flags. aka --old-flag-name == --new-flag-name
``` go
func aliasNormalizeFunc(f *pflag.FlagSet, name string) pflag.NormalizedName {
switch name {
case "old-flag-name":
name = "new-flag-name"
break
}
return pflag.NormalizedName(name)
}
myFlagSet.SetNormalizeFunc(aliasNormalizeFunc)
```
## Deprecating a flag or its shorthand
It is possible to deprecate a flag, or just its shorthand. Deprecating a flag/shorthand hides it from help text and prints a usage message when the deprecated flag/shorthand is used.
**Example #1**: You want to deprecate a flag named "badflag" as well as inform the users what flag they should use instead.
```go
// deprecate a flag by specifying its name and a usage message
flags.MarkDeprecated("badflag", "please use --good-flag instead")
```
This hides "badflag" from help text, and prints `Flag --badflag has been deprecated, please use --good-flag instead` when "badflag" is used.
**Example #2**: You want to keep a flag name "noshorthandflag" but deprecate its shortname "n".
```go
// deprecate a flag shorthand by specifying its flag name and a usage message
flags.MarkShorthandDeprecated("noshorthandflag", "please use --noshorthandflag only")
```
This hides the shortname "n" from help text, and prints `Flag shorthand -n has been deprecated, please use --noshorthandflag only` when the shorthand "n" is used.
Note that usage message is essential here, and it should not be empty.
## Hidden flags
It is possible to mark a flag as hidden, meaning it will still function as normal, however will not show up in usage/help text.
**Example**: You have a flag named "secretFlag" that you need for internal use only and don't want it showing up in help text, or for its usage text to be available.
```go
// hide a flag by specifying its name
flags.MarkHidden("secretFlag")
```
## Supporting Go flags when using pflag
In order to support flags defined using Go's `flag` package, they must be added to the `pflag` flagset. This is usually necessary
to support flags defined by third-party dependencies (e.g. `golang/glog`).
**Example**: You want to add the Go flags to the `CommandLine` flagset
```go
import (
goflag "flag"
flag "github.com/spf13/pflag"
)
var ip *int = flag.Int("flagname", 1234, "help message for flagname")
func main() {
flag.CommandLine.AddGoFlagSet(goflag.CommandLine)
flag.Parse()
}
```
## More info
You can see the full reference documentation of the pflag package
[at godoc.org][3], or through go's standard documentation system by
running `godoc -http=:6060` and browsing to
[http://localhost:6060/pkg/github.com/ogier/pflag][2] after
installation.
[2]: http://localhost:6060/pkg/github.com/ogier/pflag
[3]: http://godoc.org/github.com/ogier/pflag

97
vendor/github.com/spf13/pflag/bool.go generated vendored Normal file
View file

@ -0,0 +1,97 @@
package pflag
import (
"fmt"
"strconv"
)
// optional interface to indicate boolean flags that can be
// supplied without "=value" text
type boolFlag interface {
Value
IsBoolFlag() bool
}
// -- bool Value
type boolValue bool
func newBoolValue(val bool, p *bool) *boolValue {
*p = val
return (*boolValue)(p)
}
func (b *boolValue) Set(s string) error {
v, err := strconv.ParseBool(s)
*b = boolValue(v)
return err
}
func (b *boolValue) Type() string {
return "bool"
}
func (b *boolValue) String() string { return fmt.Sprintf("%v", *b) }
func (b *boolValue) IsBoolFlag() bool { return true }
func boolConv(sval string) (interface{}, error) {
return strconv.ParseBool(sval)
}
// GetBool return the bool value of a flag with the given name
func (f *FlagSet) GetBool(name string) (bool, error) {
val, err := f.getFlagType(name, "bool", boolConv)
if err != nil {
return false, err
}
return val.(bool), nil
}
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func (f *FlagSet) BoolVar(p *bool, name string, value bool, usage string) {
f.BoolVarP(p, name, "", value, usage)
}
// BoolVarP is like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
flag := f.VarPF(newBoolValue(value, p), name, shorthand, usage)
flag.NoOptDefVal = "true"
}
// BoolVar defines a bool flag with specified name, default value, and usage string.
// The argument p points to a bool variable in which to store the value of the flag.
func BoolVar(p *bool, name string, value bool, usage string) {
BoolVarP(p, name, "", value, usage)
}
// BoolVarP is like BoolVar, but accepts a shorthand letter that can be used after a single dash.
func BoolVarP(p *bool, name, shorthand string, value bool, usage string) {
flag := CommandLine.VarPF(newBoolValue(value, p), name, shorthand, usage)
flag.NoOptDefVal = "true"
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func (f *FlagSet) Bool(name string, value bool, usage string) *bool {
return f.BoolP(name, "", value, usage)
}
// BoolP is like Bool, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) BoolP(name, shorthand string, value bool, usage string) *bool {
p := new(bool)
f.BoolVarP(p, name, shorthand, value, usage)
return p
}
// Bool defines a bool flag with specified name, default value, and usage string.
// The return value is the address of a bool variable that stores the value of the flag.
func Bool(name string, value bool, usage string) *bool {
return BoolP(name, "", value, usage)
}
// BoolP is like Bool, but accepts a shorthand letter that can be used after a single dash.
func BoolP(name, shorthand string, value bool, usage string) *bool {
b := CommandLine.BoolP(name, shorthand, value, usage)
return b
}

97
vendor/github.com/spf13/pflag/count.go generated vendored Normal file
View file

@ -0,0 +1,97 @@
package pflag
import (
"fmt"
"strconv"
)
// -- count Value
type countValue int
func newCountValue(val int, p *int) *countValue {
*p = val
return (*countValue)(p)
}
func (i *countValue) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
// -1 means that no specific value was passed, so increment
if v == -1 {
*i = countValue(*i + 1)
} else {
*i = countValue(v)
}
return err
}
func (i *countValue) Type() string {
return "count"
}
func (i *countValue) String() string { return fmt.Sprintf("%v", *i) }
func countConv(sval string) (interface{}, error) {
i, err := strconv.Atoi(sval)
if err != nil {
return nil, err
}
return i, nil
}
// GetCount return the int value of a flag with the given name
func (f *FlagSet) GetCount(name string) (int, error) {
val, err := f.getFlagType(name, "count", countConv)
if err != nil {
return 0, err
}
return val.(int), nil
}
// CountVar defines a count flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
// A count flag will add 1 to its value evey time it is found on the command line
func (f *FlagSet) CountVar(p *int, name string, usage string) {
f.CountVarP(p, name, "", usage)
}
// CountVarP is like CountVar only take a shorthand for the flag name.
func (f *FlagSet) CountVarP(p *int, name, shorthand string, usage string) {
flag := f.VarPF(newCountValue(0, p), name, shorthand, usage)
flag.NoOptDefVal = "-1"
}
// CountVar like CountVar only the flag is placed on the CommandLine instead of a given flag set
func CountVar(p *int, name string, usage string) {
CommandLine.CountVar(p, name, usage)
}
// CountVarP is like CountVar only take a shorthand for the flag name.
func CountVarP(p *int, name, shorthand string, usage string) {
CommandLine.CountVarP(p, name, shorthand, usage)
}
// Count defines a count flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
// A count flag will add 1 to its value evey time it is found on the command line
func (f *FlagSet) Count(name string, usage string) *int {
p := new(int)
f.CountVarP(p, name, "", usage)
return p
}
// CountP is like Count only takes a shorthand for the flag name.
func (f *FlagSet) CountP(name, shorthand string, usage string) *int {
p := new(int)
f.CountVarP(p, name, shorthand, usage)
return p
}
// Count like Count only the flag is placed on the CommandLine isntead of a given flag set
func Count(name string, usage string) *int {
return CommandLine.CountP(name, "", usage)
}
// CountP is like Count only takes a shorthand for the flag name.
func CountP(name, shorthand string, usage string) *int {
return CommandLine.CountP(name, shorthand, usage)
}

86
vendor/github.com/spf13/pflag/duration.go generated vendored Normal file
View file

@ -0,0 +1,86 @@
package pflag
import (
"time"
)
// -- time.Duration Value
type durationValue time.Duration
func newDurationValue(val time.Duration, p *time.Duration) *durationValue {
*p = val
return (*durationValue)(p)
}
func (d *durationValue) Set(s string) error {
v, err := time.ParseDuration(s)
*d = durationValue(v)
return err
}
func (d *durationValue) Type() string {
return "duration"
}
func (d *durationValue) String() string { return (*time.Duration)(d).String() }
func durationConv(sval string) (interface{}, error) {
return time.ParseDuration(sval)
}
// GetDuration return the duration value of a flag with the given name
func (f *FlagSet) GetDuration(name string) (time.Duration, error) {
val, err := f.getFlagType(name, "duration", durationConv)
if err != nil {
return 0, err
}
return val.(time.Duration), nil
}
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func (f *FlagSet) DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, "", usage)
}
// DurationVarP is like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
f.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// DurationVar defines a time.Duration flag with specified name, default value, and usage string.
// The argument p points to a time.Duration variable in which to store the value of the flag.
func DurationVar(p *time.Duration, name string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, "", usage)
}
// DurationVarP is like DurationVar, but accepts a shorthand letter that can be used after a single dash.
func DurationVarP(p *time.Duration, name, shorthand string, value time.Duration, usage string) {
CommandLine.VarP(newDurationValue(value, p), name, shorthand, usage)
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func (f *FlagSet) Duration(name string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, "", value, usage)
return p
}
// DurationP is like Duration, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
p := new(time.Duration)
f.DurationVarP(p, name, shorthand, value, usage)
return p
}
// Duration defines a time.Duration flag with specified name, default value, and usage string.
// The return value is the address of a time.Duration variable that stores the value of the flag.
func Duration(name string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, "", value, usage)
}
// DurationP is like Duration, but accepts a shorthand letter that can be used after a single dash.
func DurationP(name, shorthand string, value time.Duration, usage string) *time.Duration {
return CommandLine.DurationP(name, shorthand, value, usage)
}

934
vendor/github.com/spf13/pflag/flag.go generated vendored Normal file
View file

@ -0,0 +1,934 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
/*
Package pflag is a drop-in replacement for Go's flag package, implementing
POSIX/GNU-style --flags.
pflag is compatible with the GNU extensions to the POSIX recommendations
for command-line options. See
http://www.gnu.org/software/libc/manual/html_node/Argument-Syntax.html
Usage:
pflag is a drop-in replacement of Go's native flag package. If you import
pflag under the name "flag" then all code should continue to function
with no changes.
import flag "github.com/ogier/pflag"
There is one exception to this: if you directly instantiate the Flag struct
there is one more field "Shorthand" that you will need to set.
Most code never instantiates this struct directly, and instead uses
functions such as String(), BoolVar(), and Var(), and is therefore
unaffected.
Define flags using flag.String(), Bool(), Int(), etc.
This declares an integer flag, -flagname, stored in the pointer ip, with type *int.
var ip = flag.Int("flagname", 1234, "help message for flagname")
If you like, you can bind the flag to a variable using the Var() functions.
var flagvar int
func init() {
flag.IntVar(&flagvar, "flagname", 1234, "help message for flagname")
}
Or you can create custom flags that satisfy the Value interface (with
pointer receivers) and couple them to flag parsing by
flag.Var(&flagVal, "name", "help message for flagname")
For such flags, the default value is just the initial value of the variable.
After all flags are defined, call
flag.Parse()
to parse the command line into the defined flags.
Flags may then be used directly. If you're using the flags themselves,
they are all pointers; if you bind to variables, they're values.
fmt.Println("ip has value ", *ip)
fmt.Println("flagvar has value ", flagvar)
After parsing, the arguments after the flag are available as the
slice flag.Args() or individually as flag.Arg(i).
The arguments are indexed from 0 through flag.NArg()-1.
The pflag package also defines some new functions that are not in flag,
that give one-letter shorthands for flags. You can use these by appending
'P' to the name of any function that defines a flag.
var ip = flag.IntP("flagname", "f", 1234, "help message")
var flagvar bool
func init() {
flag.BoolVarP("boolname", "b", true, "help message")
}
flag.VarP(&flagVar, "varname", "v", 1234, "help message")
Shorthand letters can be used with single dashes on the command line.
Boolean shorthand flags can be combined with other shorthand flags.
Command line flag syntax:
--flag // boolean flags only
--flag=x
Unlike the flag package, a single dash before an option means something
different than a double dash. Single dashes signify a series of shorthand
letters for flags. All but the last shorthand letter must be boolean flags.
// boolean flags
-f
-abc
// non-boolean flags
-n 1234
-Ifile
// mixed
-abcs "hello"
-abcn1234
Flag parsing stops after the terminator "--". Unlike the flag package,
flags can be interspersed with arguments anywhere on the command line
before this terminator.
Integer flags accept 1234, 0664, 0x1234 and may be negative.
Boolean flags (in their long form) accept 1, 0, t, f, true, false,
TRUE, FALSE, True, False.
Duration flags accept any input valid for time.ParseDuration.
The default set of command-line flags is controlled by
top-level functions. The FlagSet type allows one to define
independent sets of flags, such as to implement subcommands
in a command-line interface. The methods of FlagSet are
analogous to the top-level functions for the command-line
flag set.
*/
package pflag
import (
"bytes"
"errors"
"fmt"
"io"
"os"
"sort"
"strings"
)
// ErrHelp is the error returned if the flag -help is invoked but no such flag is defined.
var ErrHelp = errors.New("pflag: help requested")
// ErrorHandling defines how to handle flag parsing errors.
type ErrorHandling int
const (
// ContinueOnError will return an err from Parse() if an error is found
ContinueOnError ErrorHandling = iota
// ExitOnError will call os.Exit(2) if an error is found when parsing
ExitOnError
// PanicOnError will panic() if an error is found when parsing flags
PanicOnError
)
// NormalizedName is a flag name that has been normalized according to rules
// for the FlagSet (e.g. making '-' and '_' equivalent).
type NormalizedName string
// A FlagSet represents a set of defined flags.
type FlagSet struct {
// Usage is the function called when an error occurs while parsing flags.
// The field is a function (not a method) that may be changed to point to
// a custom error handler.
Usage func()
name string
parsed bool
actual map[NormalizedName]*Flag
formal map[NormalizedName]*Flag
shorthands map[byte]*Flag
args []string // arguments after flags
argsLenAtDash int // len(args) when a '--' was located when parsing, or -1 if no --
exitOnError bool // does the program exit if there's an error?
errorHandling ErrorHandling
output io.Writer // nil means stderr; use out() accessor
interspersed bool // allow interspersed option/non-option args
normalizeNameFunc func(f *FlagSet, name string) NormalizedName
}
// A Flag represents the state of a flag.
type Flag struct {
Name string // name as it appears on command line
Shorthand string // one-letter abbreviated flag
Usage string // help message
Value Value // value as set
DefValue string // default value (as text); for usage message
Changed bool // If the user set the value (or if left to default)
NoOptDefVal string //default value (as text); if the flag is on the command line without any options
Deprecated string // If this flag is deprecated, this string is the new or now thing to use
Hidden bool // used by cobra.Command to allow flags to be hidden from help/usage text
ShorthandDeprecated string // If the shorthand of this flag is deprecated, this string is the new or now thing to use
Annotations map[string][]string // used by cobra.Command bash autocomple code
}
// Value is the interface to the dynamic value stored in a flag.
// (The default value is represented as a string.)
type Value interface {
String() string
Set(string) error
Type() string
}
// sortFlags returns the flags as a slice in lexicographical sorted order.
func sortFlags(flags map[NormalizedName]*Flag) []*Flag {
list := make(sort.StringSlice, len(flags))
i := 0
for k := range flags {
list[i] = string(k)
i++
}
list.Sort()
result := make([]*Flag, len(list))
for i, name := range list {
result[i] = flags[NormalizedName(name)]
}
return result
}
// SetNormalizeFunc allows you to add a function which can translate flag names.
// Flags added to the FlagSet will be translated and then when anything tries to
// look up the flag that will also be translated. So it would be possible to create
// a flag named "getURL" and have it translated to "geturl". A user could then pass
// "--getUrl" which may also be translated to "geturl" and everything will work.
func (f *FlagSet) SetNormalizeFunc(n func(f *FlagSet, name string) NormalizedName) {
f.normalizeNameFunc = n
for k, v := range f.formal {
delete(f.formal, k)
nname := f.normalizeFlagName(string(k))
f.formal[nname] = v
v.Name = string(nname)
}
}
// GetNormalizeFunc returns the previously set NormalizeFunc of a function which
// does no translation, if not set previously.
func (f *FlagSet) GetNormalizeFunc() func(f *FlagSet, name string) NormalizedName {
if f.normalizeNameFunc != nil {
return f.normalizeNameFunc
}
return func(f *FlagSet, name string) NormalizedName { return NormalizedName(name) }
}
func (f *FlagSet) normalizeFlagName(name string) NormalizedName {
n := f.GetNormalizeFunc()
return n(f, name)
}
func (f *FlagSet) out() io.Writer {
if f.output == nil {
return os.Stderr
}
return f.output
}
// SetOutput sets the destination for usage and error messages.
// If output is nil, os.Stderr is used.
func (f *FlagSet) SetOutput(output io.Writer) {
f.output = output
}
// VisitAll visits the flags in lexicographical order, calling fn for each.
// It visits all flags, even those not set.
func (f *FlagSet) VisitAll(fn func(*Flag)) {
for _, flag := range sortFlags(f.formal) {
fn(flag)
}
}
// HasFlags returns a bool to indicate if the FlagSet has any flags definied.
func (f *FlagSet) HasFlags() bool {
return len(f.formal) > 0
}
// HasAvailableFlags returns a bool to indicate if the FlagSet has any flags
// definied that are not hidden or deprecated.
func (f *FlagSet) HasAvailableFlags() bool {
for _, flag := range f.formal {
if !flag.Hidden && len(flag.Deprecated) == 0 {
return true
}
}
return false
}
// VisitAll visits the command-line flags in lexicographical order, calling
// fn for each. It visits all flags, even those not set.
func VisitAll(fn func(*Flag)) {
CommandLine.VisitAll(fn)
}
// Visit visits the flags in lexicographical order, calling fn for each.
// It visits only those flags that have been set.
func (f *FlagSet) Visit(fn func(*Flag)) {
for _, flag := range sortFlags(f.actual) {
fn(flag)
}
}
// Visit visits the command-line flags in lexicographical order, calling fn
// for each. It visits only those flags that have been set.
func Visit(fn func(*Flag)) {
CommandLine.Visit(fn)
}
// Lookup returns the Flag structure of the named flag, returning nil if none exists.
func (f *FlagSet) Lookup(name string) *Flag {
return f.lookup(f.normalizeFlagName(name))
}
// lookup returns the Flag structure of the named flag, returning nil if none exists.
func (f *FlagSet) lookup(name NormalizedName) *Flag {
return f.formal[name]
}
// func to return a given type for a given flag name
func (f *FlagSet) getFlagType(name string, ftype string, convFunc func(sval string) (interface{}, error)) (interface{}, error) {
flag := f.Lookup(name)
if flag == nil {
err := fmt.Errorf("flag accessed but not defined: %s", name)
return nil, err
}
if flag.Value.Type() != ftype {
err := fmt.Errorf("trying to get %s value of flag of type %s", ftype, flag.Value.Type())
return nil, err
}
sval := flag.Value.String()
result, err := convFunc(sval)
if err != nil {
return nil, err
}
return result, nil
}
// ArgsLenAtDash will return the length of f.Args at the moment when a -- was
// found during arg parsing. This allows your program to know which args were
// before the -- and which came after.
func (f *FlagSet) ArgsLenAtDash() int {
return f.argsLenAtDash
}
// MarkDeprecated indicated that a flag is deprecated in your program. It will
// continue to function but will not show up in help or usage messages. Using
// this flag will also print the given usageMessage.
func (f *FlagSet) MarkDeprecated(name string, usageMessage string) error {
flag := f.Lookup(name)
if flag == nil {
return fmt.Errorf("flag %q does not exist", name)
}
if len(usageMessage) == 0 {
return fmt.Errorf("deprecated message for flag %q must be set", name)
}
flag.Deprecated = usageMessage
return nil
}
// MarkShorthandDeprecated will mark the shorthand of a flag deprecated in your
// program. It will continue to function but will not show up in help or usage
// messages. Using this flag will also print the given usageMessage.
func (f *FlagSet) MarkShorthandDeprecated(name string, usageMessage string) error {
flag := f.Lookup(name)
if flag == nil {
return fmt.Errorf("flag %q does not exist", name)
}
if len(usageMessage) == 0 {
return fmt.Errorf("deprecated message for flag %q must be set", name)
}
flag.ShorthandDeprecated = usageMessage
return nil
}
// MarkHidden sets a flag to 'hidden' in your program. It will continue to
// function but will not show up in help or usage messages.
func (f *FlagSet) MarkHidden(name string) error {
flag := f.Lookup(name)
if flag == nil {
return fmt.Errorf("flag %q does not exist", name)
}
flag.Hidden = true
return nil
}
// Lookup returns the Flag structure of the named command-line flag,
// returning nil if none exists.
func Lookup(name string) *Flag {
return CommandLine.Lookup(name)
}
// Set sets the value of the named flag.
func (f *FlagSet) Set(name, value string) error {
normalName := f.normalizeFlagName(name)
flag, ok := f.formal[normalName]
if !ok {
return fmt.Errorf("no such flag -%v", name)
}
err := flag.Value.Set(value)
if err != nil {
return err
}
if f.actual == nil {
f.actual = make(map[NormalizedName]*Flag)
}
f.actual[normalName] = flag
flag.Changed = true
if len(flag.Deprecated) > 0 {
fmt.Fprintf(os.Stderr, "Flag --%s has been deprecated, %s\n", flag.Name, flag.Deprecated)
}
return nil
}
// SetAnnotation allows one to set arbitrary annotations on a flag in the FlagSet.
// This is sometimes used by spf13/cobra programs which want to generate additional
// bash completion information.
func (f *FlagSet) SetAnnotation(name, key string, values []string) error {
normalName := f.normalizeFlagName(name)
flag, ok := f.formal[normalName]
if !ok {
return fmt.Errorf("no such flag -%v", name)
}
if flag.Annotations == nil {
flag.Annotations = map[string][]string{}
}
flag.Annotations[key] = values
return nil
}
// Changed returns true if the flag was explicitly set during Parse() and false
// otherwise
func (f *FlagSet) Changed(name string) bool {
flag := f.Lookup(name)
// If a flag doesn't exist, it wasn't changed....
if flag == nil {
return false
}
return flag.Changed
}
// Set sets the value of the named command-line flag.
func Set(name, value string) error {
return CommandLine.Set(name, value)
}
// PrintDefaults prints, to standard error unless configured
// otherwise, the default values of all defined flags in the set.
func (f *FlagSet) PrintDefaults() {
usages := f.FlagUsages()
fmt.Fprintf(f.out(), "%s", usages)
}
// isZeroValue guesses whether the string represents the zero
// value for a flag. It is not accurate but in practice works OK.
func isZeroValue(value string) bool {
switch value {
case "false":
return true
case "<nil>":
return true
case "":
return true
case "0":
return true
}
return false
}
// UnquoteUsage extracts a back-quoted name from the usage
// string for a flag and returns it and the un-quoted usage.
// Given "a `name` to show" it returns ("name", "a name to show").
// If there are no back quotes, the name is an educated guess of the
// type of the flag's value, or the empty string if the flag is boolean.
func UnquoteUsage(flag *Flag) (name string, usage string) {
// Look for a back-quoted name, but avoid the strings package.
usage = flag.Usage
for i := 0; i < len(usage); i++ {
if usage[i] == '`' {
for j := i + 1; j < len(usage); j++ {
if usage[j] == '`' {
name = usage[i+1 : j]
usage = usage[:i] + name + usage[j+1:]
return name, usage
}
}
break // Only one back quote; use type name.
}
}
// No explicit name, so use type if we can find one.
name = "value"
switch flag.Value.(type) {
case boolFlag:
name = ""
case *durationValue:
name = "duration"
case *float64Value:
name = "float"
case *intValue, *int64Value:
name = "int"
case *stringValue:
name = "string"
case *uintValue, *uint64Value:
name = "uint"
}
return
}
// FlagUsages Returns a string containing the usage information for all flags in
// the FlagSet
func (f *FlagSet) FlagUsages() string {
x := new(bytes.Buffer)
lines := make([]string, 0, len(f.formal))
maxlen := 0
f.VisitAll(func(flag *Flag) {
if len(flag.Deprecated) > 0 || flag.Hidden {
return
}
line := ""
if len(flag.Shorthand) > 0 && len(flag.ShorthandDeprecated) == 0 {
line = fmt.Sprintf(" -%s, --%s", flag.Shorthand, flag.Name)
} else {
line = fmt.Sprintf(" --%s", flag.Name)
}
varname, usage := UnquoteUsage(flag)
if len(varname) > 0 {
line += " " + varname
}
if len(flag.NoOptDefVal) > 0 {
switch flag.Value.Type() {
case "string":
line += fmt.Sprintf("[=%q]", flag.NoOptDefVal)
case "bool":
if flag.NoOptDefVal != "true" {
line += fmt.Sprintf("[=%s]", flag.NoOptDefVal)
}
default:
line += fmt.Sprintf("[=%s]", flag.NoOptDefVal)
}
}
// This special character will be replaced with spacing once the
// correct alignment is calculated
line += "\x00"
if len(line) > maxlen {
maxlen = len(line)
}
line += usage
if !isZeroValue(flag.DefValue) {
if flag.Value.Type() == "string" {
line += fmt.Sprintf(" (default %q)", flag.DefValue)
} else {
line += fmt.Sprintf(" (default %s)", flag.DefValue)
}
}
lines = append(lines, line)
})
for _, line := range lines {
sidx := strings.Index(line, "\x00")
spacing := strings.Repeat(" ", maxlen-sidx)
fmt.Fprintln(x, line[:sidx], spacing, line[sidx+1:])
}
return x.String()
}
// PrintDefaults prints to standard error the default values of all defined command-line flags.
func PrintDefaults() {
CommandLine.PrintDefaults()
}
// defaultUsage is the default function to print a usage message.
func defaultUsage(f *FlagSet) {
fmt.Fprintf(f.out(), "Usage of %s:\n", f.name)
f.PrintDefaults()
}
// NOTE: Usage is not just defaultUsage(CommandLine)
// because it serves (via godoc flag Usage) as the example
// for how to write your own usage function.
// Usage prints to standard error a usage message documenting all defined command-line flags.
// The function is a variable that may be changed to point to a custom function.
// By default it prints a simple header and calls PrintDefaults; for details about the
// format of the output and how to control it, see the documentation for PrintDefaults.
var Usage = func() {
fmt.Fprintf(os.Stderr, "Usage of %s:\n", os.Args[0])
PrintDefaults()
}
// NFlag returns the number of flags that have been set.
func (f *FlagSet) NFlag() int { return len(f.actual) }
// NFlag returns the number of command-line flags that have been set.
func NFlag() int { return len(CommandLine.actual) }
// Arg returns the i'th argument. Arg(0) is the first remaining argument
// after flags have been processed.
func (f *FlagSet) Arg(i int) string {
if i < 0 || i >= len(f.args) {
return ""
}
return f.args[i]
}
// Arg returns the i'th command-line argument. Arg(0) is the first remaining argument
// after flags have been processed.
func Arg(i int) string {
return CommandLine.Arg(i)
}
// NArg is the number of arguments remaining after flags have been processed.
func (f *FlagSet) NArg() int { return len(f.args) }
// NArg is the number of arguments remaining after flags have been processed.
func NArg() int { return len(CommandLine.args) }
// Args returns the non-flag arguments.
func (f *FlagSet) Args() []string { return f.args }
// Args returns the non-flag command-line arguments.
func Args() []string { return CommandLine.args }
// Var defines a flag with the specified name and usage string. The type and
// value of the flag are represented by the first argument, of type Value, which
// typically holds a user-defined implementation of Value. For instance, the
// caller could create a flag that turns a comma-separated string into a slice
// of strings by giving the slice the methods of Value; in particular, Set would
// decompose the comma-separated string into the slice.
func (f *FlagSet) Var(value Value, name string, usage string) {
f.VarP(value, name, "", usage)
}
// VarPF is like VarP, but returns the flag created
func (f *FlagSet) VarPF(value Value, name, shorthand, usage string) *Flag {
// Remember the default value as a string; it won't change.
flag := &Flag{
Name: name,
Shorthand: shorthand,
Usage: usage,
Value: value,
DefValue: value.String(),
}
f.AddFlag(flag)
return flag
}
// VarP is like Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) VarP(value Value, name, shorthand, usage string) {
_ = f.VarPF(value, name, shorthand, usage)
}
// AddFlag will add the flag to the FlagSet
func (f *FlagSet) AddFlag(flag *Flag) {
// Call normalizeFlagName function only once
normalizedFlagName := f.normalizeFlagName(flag.Name)
_, alreadythere := f.formal[normalizedFlagName]
if alreadythere {
msg := fmt.Sprintf("%s flag redefined: %s", f.name, flag.Name)
fmt.Fprintln(f.out(), msg)
panic(msg) // Happens only if flags are declared with identical names
}
if f.formal == nil {
f.formal = make(map[NormalizedName]*Flag)
}
flag.Name = string(normalizedFlagName)
f.formal[normalizedFlagName] = flag
if len(flag.Shorthand) == 0 {
return
}
if len(flag.Shorthand) > 1 {
fmt.Fprintf(f.out(), "%s shorthand more than ASCII character: %s\n", f.name, flag.Shorthand)
panic("shorthand is more than one character")
}
if f.shorthands == nil {
f.shorthands = make(map[byte]*Flag)
}
c := flag.Shorthand[0]
old, alreadythere := f.shorthands[c]
if alreadythere {
fmt.Fprintf(f.out(), "%s shorthand reused: %q for %s already used for %s\n", f.name, c, flag.Name, old.Name)
panic("shorthand redefinition")
}
f.shorthands[c] = flag
}
// AddFlagSet adds one FlagSet to another. If a flag is already present in f
// the flag from newSet will be ignored
func (f *FlagSet) AddFlagSet(newSet *FlagSet) {
if newSet == nil {
return
}
newSet.VisitAll(func(flag *Flag) {
if f.Lookup(flag.Name) == nil {
f.AddFlag(flag)
}
})
}
// Var defines a flag with the specified name and usage string. The type and
// value of the flag are represented by the first argument, of type Value, which
// typically holds a user-defined implementation of Value. For instance, the
// caller could create a flag that turns a comma-separated string into a slice
// of strings by giving the slice the methods of Value; in particular, Set would
// decompose the comma-separated string into the slice.
func Var(value Value, name string, usage string) {
CommandLine.VarP(value, name, "", usage)
}
// VarP is like Var, but accepts a shorthand letter that can be used after a single dash.
func VarP(value Value, name, shorthand, usage string) {
CommandLine.VarP(value, name, shorthand, usage)
}
// failf prints to standard error a formatted error and usage message and
// returns the error.
func (f *FlagSet) failf(format string, a ...interface{}) error {
err := fmt.Errorf(format, a...)
fmt.Fprintln(f.out(), err)
f.usage()
return err
}
// usage calls the Usage method for the flag set, or the usage function if
// the flag set is CommandLine.
func (f *FlagSet) usage() {
if f == CommandLine {
Usage()
} else if f.Usage == nil {
defaultUsage(f)
} else {
f.Usage()
}
}
func (f *FlagSet) setFlag(flag *Flag, value string, origArg string) error {
if err := flag.Value.Set(value); err != nil {
return f.failf("invalid argument %q for %s: %v", value, origArg, err)
}
// mark as visited for Visit()
if f.actual == nil {
f.actual = make(map[NormalizedName]*Flag)
}
f.actual[f.normalizeFlagName(flag.Name)] = flag
flag.Changed = true
if len(flag.Deprecated) > 0 {
fmt.Fprintf(os.Stderr, "Flag --%s has been deprecated, %s\n", flag.Name, flag.Deprecated)
}
if len(flag.ShorthandDeprecated) > 0 && containsShorthand(origArg, flag.Shorthand) {
fmt.Fprintf(os.Stderr, "Flag shorthand -%s has been deprecated, %s\n", flag.Shorthand, flag.ShorthandDeprecated)
}
return nil
}
func containsShorthand(arg, shorthand string) bool {
// filter out flags --<flag_name>
if strings.HasPrefix(arg, "-") {
return false
}
arg = strings.SplitN(arg, "=", 2)[0]
return strings.Contains(arg, shorthand)
}
func (f *FlagSet) parseLongArg(s string, args []string) (a []string, err error) {
a = args
name := s[2:]
if len(name) == 0 || name[0] == '-' || name[0] == '=' {
err = f.failf("bad flag syntax: %s", s)
return
}
split := strings.SplitN(name, "=", 2)
name = split[0]
flag, alreadythere := f.formal[f.normalizeFlagName(name)]
if !alreadythere {
if name == "help" { // special case for nice help message.
f.usage()
return a, ErrHelp
}
err = f.failf("unknown flag: --%s", name)
return
}
var value string
if len(split) == 2 {
// '--flag=arg'
value = split[1]
} else if len(flag.NoOptDefVal) > 0 {
// '--flag' (arg was optional)
value = flag.NoOptDefVal
} else if len(a) > 0 {
// '--flag arg'
value = a[0]
a = a[1:]
} else {
// '--flag' (arg was required)
err = f.failf("flag needs an argument: %s", s)
return
}
err = f.setFlag(flag, value, s)
return
}
func (f *FlagSet) parseSingleShortArg(shorthands string, args []string) (outShorts string, outArgs []string, err error) {
if strings.HasPrefix(shorthands, "test.") {
return
}
outArgs = args
outShorts = shorthands[1:]
c := shorthands[0]
flag, alreadythere := f.shorthands[c]
if !alreadythere {
if c == 'h' { // special case for nice help message.
f.usage()
err = ErrHelp
return
}
//TODO continue on error
err = f.failf("unknown shorthand flag: %q in -%s", c, shorthands)
return
}
var value string
if len(shorthands) > 2 && shorthands[1] == '=' {
value = shorthands[2:]
outShorts = ""
} else if len(flag.NoOptDefVal) > 0 {
value = flag.NoOptDefVal
} else if len(shorthands) > 1 {
value = shorthands[1:]
outShorts = ""
} else if len(args) > 0 {
value = args[0]
outArgs = args[1:]
} else {
err = f.failf("flag needs an argument: %q in -%s", c, shorthands)
return
}
err = f.setFlag(flag, value, shorthands)
return
}
func (f *FlagSet) parseShortArg(s string, args []string) (a []string, err error) {
a = args
shorthands := s[1:]
for len(shorthands) > 0 {
shorthands, a, err = f.parseSingleShortArg(shorthands, args)
if err != nil {
return
}
}
return
}
func (f *FlagSet) parseArgs(args []string) (err error) {
for len(args) > 0 {
s := args[0]
args = args[1:]
if len(s) == 0 || s[0] != '-' || len(s) == 1 {
if !f.interspersed {
f.args = append(f.args, s)
f.args = append(f.args, args...)
return nil
}
f.args = append(f.args, s)
continue
}
if s[1] == '-' {
if len(s) == 2 { // "--" terminates the flags
f.argsLenAtDash = len(f.args)
f.args = append(f.args, args...)
break
}
args, err = f.parseLongArg(s, args)
} else {
args, err = f.parseShortArg(s, args)
}
if err != nil {
return
}
}
return
}
// Parse parses flag definitions from the argument list, which should not
// include the command name. Must be called after all flags in the FlagSet
// are defined and before flags are accessed by the program.
// The return value will be ErrHelp if -help was set but not defined.
func (f *FlagSet) Parse(arguments []string) error {
f.parsed = true
f.args = make([]string, 0, len(arguments))
err := f.parseArgs(arguments)
if err != nil {
switch f.errorHandling {
case ContinueOnError:
return err
case ExitOnError:
os.Exit(2)
case PanicOnError:
panic(err)
}
}
return nil
}
// Parsed reports whether f.Parse has been called.
func (f *FlagSet) Parsed() bool {
return f.parsed
}
// Parse parses the command-line flags from os.Args[1:]. Must be called
// after all flags are defined and before flags are accessed by the program.
func Parse() {
// Ignore errors; CommandLine is set for ExitOnError.
CommandLine.Parse(os.Args[1:])
}
// SetInterspersed sets whether to support interspersed option/non-option arguments.
func SetInterspersed(interspersed bool) {
CommandLine.SetInterspersed(interspersed)
}
// Parsed returns true if the command-line flags have been parsed.
func Parsed() bool {
return CommandLine.Parsed()
}
// CommandLine is the default set of command-line flags, parsed from os.Args.
var CommandLine = NewFlagSet(os.Args[0], ExitOnError)
// NewFlagSet returns a new, empty flag set with the specified name and
// error handling property.
func NewFlagSet(name string, errorHandling ErrorHandling) *FlagSet {
f := &FlagSet{
name: name,
errorHandling: errorHandling,
argsLenAtDash: -1,
interspersed: true,
}
return f
}
// SetInterspersed sets whether to support interspersed option/non-option arguments.
func (f *FlagSet) SetInterspersed(interspersed bool) {
f.interspersed = interspersed
}
// Init sets the name and error handling property for a flag set.
// By default, the zero FlagSet uses an empty name and the
// ContinueOnError error handling policy.
func (f *FlagSet) Init(name string, errorHandling ErrorHandling) {
f.name = name
f.errorHandling = errorHandling
f.argsLenAtDash = -1
}

91
vendor/github.com/spf13/pflag/float32.go generated vendored Normal file
View file

@ -0,0 +1,91 @@
package pflag
import (
"fmt"
"strconv"
)
// -- float32 Value
type float32Value float32
func newFloat32Value(val float32, p *float32) *float32Value {
*p = val
return (*float32Value)(p)
}
func (f *float32Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 32)
*f = float32Value(v)
return err
}
func (f *float32Value) Type() string {
return "float32"
}
func (f *float32Value) String() string { return fmt.Sprintf("%v", *f) }
func float32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseFloat(sval, 32)
if err != nil {
return 0, err
}
return float32(v), nil
}
// GetFloat32 return the float32 value of a flag with the given name
func (f *FlagSet) GetFloat32(name string) (float32, error) {
val, err := f.getFlagType(name, "float32", float32Conv)
if err != nil {
return 0, err
}
return val.(float32), nil
}
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func (f *FlagSet) Float32Var(p *float32, name string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, "", usage)
}
// Float32VarP is like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
f.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32Var defines a float32 flag with specified name, default value, and usage string.
// The argument p points to a float32 variable in which to store the value of the flag.
func Float32Var(p *float32, name string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, "", usage)
}
// Float32VarP is like Float32Var, but accepts a shorthand letter that can be used after a single dash.
func Float32VarP(p *float32, name, shorthand string, value float32, usage string) {
CommandLine.VarP(newFloat32Value(value, p), name, shorthand, usage)
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func (f *FlagSet) Float32(name string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, "", value, usage)
return p
}
// Float32P is like Float32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float32P(name, shorthand string, value float32, usage string) *float32 {
p := new(float32)
f.Float32VarP(p, name, shorthand, value, usage)
return p
}
// Float32 defines a float32 flag with specified name, default value, and usage string.
// The return value is the address of a float32 variable that stores the value of the flag.
func Float32(name string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, "", value, usage)
}
// Float32P is like Float32, but accepts a shorthand letter that can be used after a single dash.
func Float32P(name, shorthand string, value float32, usage string) *float32 {
return CommandLine.Float32P(name, shorthand, value, usage)
}

87
vendor/github.com/spf13/pflag/float64.go generated vendored Normal file
View file

@ -0,0 +1,87 @@
package pflag
import (
"fmt"
"strconv"
)
// -- float64 Value
type float64Value float64
func newFloat64Value(val float64, p *float64) *float64Value {
*p = val
return (*float64Value)(p)
}
func (f *float64Value) Set(s string) error {
v, err := strconv.ParseFloat(s, 64)
*f = float64Value(v)
return err
}
func (f *float64Value) Type() string {
return "float64"
}
func (f *float64Value) String() string { return fmt.Sprintf("%v", *f) }
func float64Conv(sval string) (interface{}, error) {
return strconv.ParseFloat(sval, 64)
}
// GetFloat64 return the float64 value of a flag with the given name
func (f *FlagSet) GetFloat64(name string) (float64, error) {
val, err := f.getFlagType(name, "float64", float64Conv)
if err != nil {
return 0, err
}
return val.(float64), nil
}
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func (f *FlagSet) Float64Var(p *float64, name string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, "", usage)
}
// Float64VarP is like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
f.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64Var defines a float64 flag with specified name, default value, and usage string.
// The argument p points to a float64 variable in which to store the value of the flag.
func Float64Var(p *float64, name string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, "", usage)
}
// Float64VarP is like Float64Var, but accepts a shorthand letter that can be used after a single dash.
func Float64VarP(p *float64, name, shorthand string, value float64, usage string) {
CommandLine.VarP(newFloat64Value(value, p), name, shorthand, usage)
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func (f *FlagSet) Float64(name string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, "", value, usage)
return p
}
// Float64P is like Float64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Float64P(name, shorthand string, value float64, usage string) *float64 {
p := new(float64)
f.Float64VarP(p, name, shorthand, value, usage)
return p
}
// Float64 defines a float64 flag with specified name, default value, and usage string.
// The return value is the address of a float64 variable that stores the value of the flag.
func Float64(name string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, "", value, usage)
}
// Float64P is like Float64, but accepts a shorthand letter that can be used after a single dash.
func Float64P(name, shorthand string, value float64, usage string) *float64 {
return CommandLine.Float64P(name, shorthand, value, usage)
}

104
vendor/github.com/spf13/pflag/golangflag.go generated vendored Normal file
View file

@ -0,0 +1,104 @@
// Copyright 2009 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package pflag
import (
goflag "flag"
"fmt"
"reflect"
"strings"
)
var _ = fmt.Print
// flagValueWrapper implements pflag.Value around a flag.Value. The main
// difference here is the addition of the Type method that returns a string
// name of the type. As this is generally unknown, we approximate that with
// reflection.
type flagValueWrapper struct {
inner goflag.Value
flagType string
}
// We are just copying the boolFlag interface out of goflag as that is what
// they use to decide if a flag should get "true" when no arg is given.
type goBoolFlag interface {
goflag.Value
IsBoolFlag() bool
}
func wrapFlagValue(v goflag.Value) Value {
// If the flag.Value happens to also be a pflag.Value, just use it directly.
if pv, ok := v.(Value); ok {
return pv
}
pv := &flagValueWrapper{
inner: v,
}
t := reflect.TypeOf(v)
if t.Kind() == reflect.Interface || t.Kind() == reflect.Ptr {
t = t.Elem()
}
pv.flagType = strings.TrimSuffix(t.Name(), "Value")
return pv
}
func (v *flagValueWrapper) String() string {
return v.inner.String()
}
func (v *flagValueWrapper) Set(s string) error {
return v.inner.Set(s)
}
func (v *flagValueWrapper) Type() string {
return v.flagType
}
// PFlagFromGoFlag will return a *pflag.Flag given a *flag.Flag
// If the *flag.Flag.Name was a single character (ex: `v`) it will be accessiblei
// with both `-v` and `--v` in flags. If the golang flag was more than a single
// character (ex: `verbose`) it will only be accessible via `--verbose`
func PFlagFromGoFlag(goflag *goflag.Flag) *Flag {
// Remember the default value as a string; it won't change.
flag := &Flag{
Name: goflag.Name,
Usage: goflag.Usage,
Value: wrapFlagValue(goflag.Value),
// Looks like golang flags don't set DefValue correctly :-(
//DefValue: goflag.DefValue,
DefValue: goflag.Value.String(),
}
// Ex: if the golang flag was -v, allow both -v and --v to work
if len(flag.Name) == 1 {
flag.Shorthand = flag.Name
}
if fv, ok := goflag.Value.(goBoolFlag); ok && fv.IsBoolFlag() {
flag.NoOptDefVal = "true"
}
return flag
}
// AddGoFlag will add the given *flag.Flag to the pflag.FlagSet
func (f *FlagSet) AddGoFlag(goflag *goflag.Flag) {
if f.Lookup(goflag.Name) != nil {
return
}
newflag := PFlagFromGoFlag(goflag)
f.AddFlag(newflag)
}
// AddGoFlagSet will add the given *flag.FlagSet to the pflag.FlagSet
func (f *FlagSet) AddGoFlagSet(newSet *goflag.FlagSet) {
if newSet == nil {
return
}
newSet.VisitAll(func(goflag *goflag.Flag) {
f.AddGoFlag(goflag)
})
}

87
vendor/github.com/spf13/pflag/int.go generated vendored Normal file
View file

@ -0,0 +1,87 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int Value
type intValue int
func newIntValue(val int, p *int) *intValue {
*p = val
return (*intValue)(p)
}
func (i *intValue) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = intValue(v)
return err
}
func (i *intValue) Type() string {
return "int"
}
func (i *intValue) String() string { return fmt.Sprintf("%v", *i) }
func intConv(sval string) (interface{}, error) {
return strconv.Atoi(sval)
}
// GetInt return the int value of a flag with the given name
func (f *FlagSet) GetInt(name string) (int, error) {
val, err := f.getFlagType(name, "int", intConv)
if err != nil {
return 0, err
}
return val.(int), nil
}
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func (f *FlagSet) IntVar(p *int, name string, value int, usage string) {
f.VarP(newIntValue(value, p), name, "", usage)
}
// IntVarP is like IntVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntVarP(p *int, name, shorthand string, value int, usage string) {
f.VarP(newIntValue(value, p), name, shorthand, usage)
}
// IntVar defines an int flag with specified name, default value, and usage string.
// The argument p points to an int variable in which to store the value of the flag.
func IntVar(p *int, name string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, "", usage)
}
// IntVarP is like IntVar, but accepts a shorthand letter that can be used after a single dash.
func IntVarP(p *int, name, shorthand string, value int, usage string) {
CommandLine.VarP(newIntValue(value, p), name, shorthand, usage)
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func (f *FlagSet) Int(name string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, "", value, usage)
return p
}
// IntP is like Int, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntP(name, shorthand string, value int, usage string) *int {
p := new(int)
f.IntVarP(p, name, shorthand, value, usage)
return p
}
// Int defines an int flag with specified name, default value, and usage string.
// The return value is the address of an int variable that stores the value of the flag.
func Int(name string, value int, usage string) *int {
return CommandLine.IntP(name, "", value, usage)
}
// IntP is like Int, but accepts a shorthand letter that can be used after a single dash.
func IntP(name, shorthand string, value int, usage string) *int {
return CommandLine.IntP(name, shorthand, value, usage)
}

91
vendor/github.com/spf13/pflag/int32.go generated vendored Normal file
View file

@ -0,0 +1,91 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int32 Value
type int32Value int32
func newInt32Value(val int32, p *int32) *int32Value {
*p = val
return (*int32Value)(p)
}
func (i *int32Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 32)
*i = int32Value(v)
return err
}
func (i *int32Value) Type() string {
return "int32"
}
func (i *int32Value) String() string { return fmt.Sprintf("%v", *i) }
func int32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseInt(sval, 0, 32)
if err != nil {
return 0, err
}
return int32(v), nil
}
// GetInt32 return the int32 value of a flag with the given name
func (f *FlagSet) GetInt32(name string) (int32, error) {
val, err := f.getFlagType(name, "int32", int32Conv)
if err != nil {
return 0, err
}
return val.(int32), nil
}
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func (f *FlagSet) Int32Var(p *int32, name string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, "", usage)
}
// Int32VarP is like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
f.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32Var defines an int32 flag with specified name, default value, and usage string.
// The argument p points to an int32 variable in which to store the value of the flag.
func Int32Var(p *int32, name string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, "", usage)
}
// Int32VarP is like Int32Var, but accepts a shorthand letter that can be used after a single dash.
func Int32VarP(p *int32, name, shorthand string, value int32, usage string) {
CommandLine.VarP(newInt32Value(value, p), name, shorthand, usage)
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func (f *FlagSet) Int32(name string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, "", value, usage)
return p
}
// Int32P is like Int32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int32P(name, shorthand string, value int32, usage string) *int32 {
p := new(int32)
f.Int32VarP(p, name, shorthand, value, usage)
return p
}
// Int32 defines an int32 flag with specified name, default value, and usage string.
// The return value is the address of an int32 variable that stores the value of the flag.
func Int32(name string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, "", value, usage)
}
// Int32P is like Int32, but accepts a shorthand letter that can be used after a single dash.
func Int32P(name, shorthand string, value int32, usage string) *int32 {
return CommandLine.Int32P(name, shorthand, value, usage)
}

87
vendor/github.com/spf13/pflag/int64.go generated vendored Normal file
View file

@ -0,0 +1,87 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int64 Value
type int64Value int64
func newInt64Value(val int64, p *int64) *int64Value {
*p = val
return (*int64Value)(p)
}
func (i *int64Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 64)
*i = int64Value(v)
return err
}
func (i *int64Value) Type() string {
return "int64"
}
func (i *int64Value) String() string { return fmt.Sprintf("%v", *i) }
func int64Conv(sval string) (interface{}, error) {
return strconv.ParseInt(sval, 0, 64)
}
// GetInt64 return the int64 value of a flag with the given name
func (f *FlagSet) GetInt64(name string) (int64, error) {
val, err := f.getFlagType(name, "int64", int64Conv)
if err != nil {
return 0, err
}
return val.(int64), nil
}
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func (f *FlagSet) Int64Var(p *int64, name string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, "", usage)
}
// Int64VarP is like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
f.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64Var defines an int64 flag with specified name, default value, and usage string.
// The argument p points to an int64 variable in which to store the value of the flag.
func Int64Var(p *int64, name string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, "", usage)
}
// Int64VarP is like Int64Var, but accepts a shorthand letter that can be used after a single dash.
func Int64VarP(p *int64, name, shorthand string, value int64, usage string) {
CommandLine.VarP(newInt64Value(value, p), name, shorthand, usage)
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func (f *FlagSet) Int64(name string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, "", value, usage)
return p
}
// Int64P is like Int64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int64P(name, shorthand string, value int64, usage string) *int64 {
p := new(int64)
f.Int64VarP(p, name, shorthand, value, usage)
return p
}
// Int64 defines an int64 flag with specified name, default value, and usage string.
// The return value is the address of an int64 variable that stores the value of the flag.
func Int64(name string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, "", value, usage)
}
// Int64P is like Int64, but accepts a shorthand letter that can be used after a single dash.
func Int64P(name, shorthand string, value int64, usage string) *int64 {
return CommandLine.Int64P(name, shorthand, value, usage)
}

91
vendor/github.com/spf13/pflag/int8.go generated vendored Normal file
View file

@ -0,0 +1,91 @@
package pflag
import (
"fmt"
"strconv"
)
// -- int8 Value
type int8Value int8
func newInt8Value(val int8, p *int8) *int8Value {
*p = val
return (*int8Value)(p)
}
func (i *int8Value) Set(s string) error {
v, err := strconv.ParseInt(s, 0, 8)
*i = int8Value(v)
return err
}
func (i *int8Value) Type() string {
return "int8"
}
func (i *int8Value) String() string { return fmt.Sprintf("%v", *i) }
func int8Conv(sval string) (interface{}, error) {
v, err := strconv.ParseInt(sval, 0, 8)
if err != nil {
return 0, err
}
return int8(v), nil
}
// GetInt8 return the int8 value of a flag with the given name
func (f *FlagSet) GetInt8(name string) (int8, error) {
val, err := f.getFlagType(name, "int8", int8Conv)
if err != nil {
return 0, err
}
return val.(int8), nil
}
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func (f *FlagSet) Int8Var(p *int8, name string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, "", usage)
}
// Int8VarP is like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
f.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8Var defines an int8 flag with specified name, default value, and usage string.
// The argument p points to an int8 variable in which to store the value of the flag.
func Int8Var(p *int8, name string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, "", usage)
}
// Int8VarP is like Int8Var, but accepts a shorthand letter that can be used after a single dash.
func Int8VarP(p *int8, name, shorthand string, value int8, usage string) {
CommandLine.VarP(newInt8Value(value, p), name, shorthand, usage)
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func (f *FlagSet) Int8(name string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, "", value, usage)
return p
}
// Int8P is like Int8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Int8P(name, shorthand string, value int8, usage string) *int8 {
p := new(int8)
f.Int8VarP(p, name, shorthand, value, usage)
return p
}
// Int8 defines an int8 flag with specified name, default value, and usage string.
// The return value is the address of an int8 variable that stores the value of the flag.
func Int8(name string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, "", value, usage)
}
// Int8P is like Int8, but accepts a shorthand letter that can be used after a single dash.
func Int8P(name, shorthand string, value int8, usage string) *int8 {
return CommandLine.Int8P(name, shorthand, value, usage)
}

128
vendor/github.com/spf13/pflag/int_slice.go generated vendored Normal file
View file

@ -0,0 +1,128 @@
package pflag
import (
"fmt"
"strconv"
"strings"
)
// -- intSlice Value
type intSliceValue struct {
value *[]int
changed bool
}
func newIntSliceValue(val []int, p *[]int) *intSliceValue {
isv := new(intSliceValue)
isv.value = p
*isv.value = val
return isv
}
func (s *intSliceValue) Set(val string) error {
ss := strings.Split(val, ",")
out := make([]int, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.Atoi(d)
if err != nil {
return err
}
}
if !s.changed {
*s.value = out
} else {
*s.value = append(*s.value, out...)
}
s.changed = true
return nil
}
func (s *intSliceValue) Type() string {
return "intSlice"
}
func (s *intSliceValue) String() string {
out := make([]string, len(*s.value))
for i, d := range *s.value {
out[i] = fmt.Sprintf("%d", d)
}
return "[" + strings.Join(out, ",") + "]"
}
func intSliceConv(val string) (interface{}, error) {
val = strings.Trim(val, "[]")
// Empty string would cause a slice with one (empty) entry
if len(val) == 0 {
return []int{}, nil
}
ss := strings.Split(val, ",")
out := make([]int, len(ss))
for i, d := range ss {
var err error
out[i], err = strconv.Atoi(d)
if err != nil {
return nil, err
}
}
return out, nil
}
// GetIntSlice return the []int value of a flag with the given name
func (f *FlagSet) GetIntSlice(name string) ([]int, error) {
val, err := f.getFlagType(name, "intSlice", intSliceConv)
if err != nil {
return []int{}, err
}
return val.([]int), nil
}
// IntSliceVar defines a intSlice flag with specified name, default value, and usage string.
// The argument p points to a []int variable in which to store the value of the flag.
func (f *FlagSet) IntSliceVar(p *[]int, name string, value []int, usage string) {
f.VarP(newIntSliceValue(value, p), name, "", usage)
}
// IntSliceVarP is like IntSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntSliceVarP(p *[]int, name, shorthand string, value []int, usage string) {
f.VarP(newIntSliceValue(value, p), name, shorthand, usage)
}
// IntSliceVar defines a int[] flag with specified name, default value, and usage string.
// The argument p points to a int[] variable in which to store the value of the flag.
func IntSliceVar(p *[]int, name string, value []int, usage string) {
CommandLine.VarP(newIntSliceValue(value, p), name, "", usage)
}
// IntSliceVarP is like IntSliceVar, but accepts a shorthand letter that can be used after a single dash.
func IntSliceVarP(p *[]int, name, shorthand string, value []int, usage string) {
CommandLine.VarP(newIntSliceValue(value, p), name, shorthand, usage)
}
// IntSlice defines a []int flag with specified name, default value, and usage string.
// The return value is the address of a []int variable that stores the value of the flag.
func (f *FlagSet) IntSlice(name string, value []int, usage string) *[]int {
p := []int{}
f.IntSliceVarP(&p, name, "", value, usage)
return &p
}
// IntSliceP is like IntSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IntSliceP(name, shorthand string, value []int, usage string) *[]int {
p := []int{}
f.IntSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// IntSlice defines a []int flag with specified name, default value, and usage string.
// The return value is the address of a []int variable that stores the value of the flag.
func IntSlice(name string, value []int, usage string) *[]int {
return CommandLine.IntSliceP(name, "", value, usage)
}
// IntSliceP is like IntSlice, but accepts a shorthand letter that can be used after a single dash.
func IntSliceP(name, shorthand string, value []int, usage string) *[]int {
return CommandLine.IntSliceP(name, shorthand, value, usage)
}

96
vendor/github.com/spf13/pflag/ip.go generated vendored Normal file
View file

@ -0,0 +1,96 @@
package pflag
import (
"fmt"
"net"
"strings"
)
var _ = strings.TrimSpace
// -- net.IP value
type ipValue net.IP
func newIPValue(val net.IP, p *net.IP) *ipValue {
*p = val
return (*ipValue)(p)
}
func (i *ipValue) String() string { return net.IP(*i).String() }
func (i *ipValue) Set(s string) error {
ip := net.ParseIP(strings.TrimSpace(s))
if ip == nil {
return fmt.Errorf("failed to parse IP: %q", s)
}
*i = ipValue(ip)
return nil
}
func (i *ipValue) Type() string {
return "ip"
}
func ipConv(sval string) (interface{}, error) {
ip := net.ParseIP(sval)
if ip != nil {
return ip, nil
}
return nil, fmt.Errorf("invalid string being converted to IP address: %s", sval)
}
// GetIP return the net.IP value of a flag with the given name
func (f *FlagSet) GetIP(name string) (net.IP, error) {
val, err := f.getFlagType(name, "ip", ipConv)
if err != nil {
return nil, err
}
return val.(net.IP), nil
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func (f *FlagSet) IPVar(p *net.IP, name string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, "", usage)
}
// IPVarP is like IPVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
f.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IPVar defines an net.IP flag with specified name, default value, and usage string.
// The argument p points to an net.IP variable in which to store the value of the flag.
func IPVar(p *net.IP, name string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, "", usage)
}
// IPVarP is like IPVar, but accepts a shorthand letter that can be used after a single dash.
func IPVarP(p *net.IP, name, shorthand string, value net.IP, usage string) {
CommandLine.VarP(newIPValue(value, p), name, shorthand, usage)
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func (f *FlagSet) IP(name string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, "", value, usage)
return p
}
// IPP is like IP, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPP(name, shorthand string, value net.IP, usage string) *net.IP {
p := new(net.IP)
f.IPVarP(p, name, shorthand, value, usage)
return p
}
// IP defines an net.IP flag with specified name, default value, and usage string.
// The return value is the address of an net.IP variable that stores the value of the flag.
func IP(name string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, "", value, usage)
}
// IPP is like IP, but accepts a shorthand letter that can be used after a single dash.
func IPP(name, shorthand string, value net.IP, usage string) *net.IP {
return CommandLine.IPP(name, shorthand, value, usage)
}

122
vendor/github.com/spf13/pflag/ipmask.go generated vendored Normal file
View file

@ -0,0 +1,122 @@
package pflag
import (
"fmt"
"net"
"strconv"
)
// -- net.IPMask value
type ipMaskValue net.IPMask
func newIPMaskValue(val net.IPMask, p *net.IPMask) *ipMaskValue {
*p = val
return (*ipMaskValue)(p)
}
func (i *ipMaskValue) String() string { return net.IPMask(*i).String() }
func (i *ipMaskValue) Set(s string) error {
ip := ParseIPv4Mask(s)
if ip == nil {
return fmt.Errorf("failed to parse IP mask: %q", s)
}
*i = ipMaskValue(ip)
return nil
}
func (i *ipMaskValue) Type() string {
return "ipMask"
}
// ParseIPv4Mask written in IP form (e.g. 255.255.255.0).
// This function should really belong to the net package.
func ParseIPv4Mask(s string) net.IPMask {
mask := net.ParseIP(s)
if mask == nil {
if len(s) != 8 {
return nil
}
// net.IPMask.String() actually outputs things like ffffff00
// so write a horrible parser for that as well :-(
m := []int{}
for i := 0; i < 4; i++ {
b := "0x" + s[2*i:2*i+2]
d, err := strconv.ParseInt(b, 0, 0)
if err != nil {
return nil
}
m = append(m, int(d))
}
s := fmt.Sprintf("%d.%d.%d.%d", m[0], m[1], m[2], m[3])
mask = net.ParseIP(s)
if mask == nil {
return nil
}
}
return net.IPv4Mask(mask[12], mask[13], mask[14], mask[15])
}
func parseIPv4Mask(sval string) (interface{}, error) {
mask := ParseIPv4Mask(sval)
if mask == nil {
return nil, fmt.Errorf("unable to parse %s as net.IPMask", sval)
}
return mask, nil
}
// GetIPv4Mask return the net.IPv4Mask value of a flag with the given name
func (f *FlagSet) GetIPv4Mask(name string) (net.IPMask, error) {
val, err := f.getFlagType(name, "ipMask", parseIPv4Mask)
if err != nil {
return nil, err
}
return val.(net.IPMask), nil
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func (f *FlagSet) IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, "", usage)
}
// IPMaskVarP is like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
f.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMaskVar defines an net.IPMask flag with specified name, default value, and usage string.
// The argument p points to an net.IPMask variable in which to store the value of the flag.
func IPMaskVar(p *net.IPMask, name string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, "", usage)
}
// IPMaskVarP is like IPMaskVar, but accepts a shorthand letter that can be used after a single dash.
func IPMaskVarP(p *net.IPMask, name, shorthand string, value net.IPMask, usage string) {
CommandLine.VarP(newIPMaskValue(value, p), name, shorthand, usage)
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func (f *FlagSet) IPMask(name string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, "", value, usage)
return p
}
// IPMaskP is like IPMask, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
p := new(net.IPMask)
f.IPMaskVarP(p, name, shorthand, value, usage)
return p
}
// IPMask defines an net.IPMask flag with specified name, default value, and usage string.
// The return value is the address of an net.IPMask variable that stores the value of the flag.
func IPMask(name string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, "", value, usage)
}
// IPMaskP is like IP, but accepts a shorthand letter that can be used after a single dash.
func IPMaskP(name, shorthand string, value net.IPMask, usage string) *net.IPMask {
return CommandLine.IPMaskP(name, shorthand, value, usage)
}

100
vendor/github.com/spf13/pflag/ipnet.go generated vendored Normal file
View file

@ -0,0 +1,100 @@
package pflag
import (
"fmt"
"net"
"strings"
)
// IPNet adapts net.IPNet for use as a flag.
type ipNetValue net.IPNet
func (ipnet ipNetValue) String() string {
n := net.IPNet(ipnet)
return n.String()
}
func (ipnet *ipNetValue) Set(value string) error {
_, n, err := net.ParseCIDR(strings.TrimSpace(value))
if err != nil {
return err
}
*ipnet = ipNetValue(*n)
return nil
}
func (*ipNetValue) Type() string {
return "ipNet"
}
var _ = strings.TrimSpace
func newIPNetValue(val net.IPNet, p *net.IPNet) *ipNetValue {
*p = val
return (*ipNetValue)(p)
}
func ipNetConv(sval string) (interface{}, error) {
_, n, err := net.ParseCIDR(strings.TrimSpace(sval))
if err == nil {
return *n, nil
}
return nil, fmt.Errorf("invalid string being converted to IPNet: %s", sval)
}
// GetIPNet return the net.IPNet value of a flag with the given name
func (f *FlagSet) GetIPNet(name string) (net.IPNet, error) {
val, err := f.getFlagType(name, "ipNet", ipNetConv)
if err != nil {
return net.IPNet{}, err
}
return val.(net.IPNet), nil
}
// IPNetVar defines an net.IPNet flag with specified name, default value, and usage string.
// The argument p points to an net.IPNet variable in which to store the value of the flag.
func (f *FlagSet) IPNetVar(p *net.IPNet, name string, value net.IPNet, usage string) {
f.VarP(newIPNetValue(value, p), name, "", usage)
}
// IPNetVarP is like IPNetVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPNetVarP(p *net.IPNet, name, shorthand string, value net.IPNet, usage string) {
f.VarP(newIPNetValue(value, p), name, shorthand, usage)
}
// IPNetVar defines an net.IPNet flag with specified name, default value, and usage string.
// The argument p points to an net.IPNet variable in which to store the value of the flag.
func IPNetVar(p *net.IPNet, name string, value net.IPNet, usage string) {
CommandLine.VarP(newIPNetValue(value, p), name, "", usage)
}
// IPNetVarP is like IPNetVar, but accepts a shorthand letter that can be used after a single dash.
func IPNetVarP(p *net.IPNet, name, shorthand string, value net.IPNet, usage string) {
CommandLine.VarP(newIPNetValue(value, p), name, shorthand, usage)
}
// IPNet defines an net.IPNet flag with specified name, default value, and usage string.
// The return value is the address of an net.IPNet variable that stores the value of the flag.
func (f *FlagSet) IPNet(name string, value net.IPNet, usage string) *net.IPNet {
p := new(net.IPNet)
f.IPNetVarP(p, name, "", value, usage)
return p
}
// IPNetP is like IPNet, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) IPNetP(name, shorthand string, value net.IPNet, usage string) *net.IPNet {
p := new(net.IPNet)
f.IPNetVarP(p, name, shorthand, value, usage)
return p
}
// IPNet defines an net.IPNet flag with specified name, default value, and usage string.
// The return value is the address of an net.IPNet variable that stores the value of the flag.
func IPNet(name string, value net.IPNet, usage string) *net.IPNet {
return CommandLine.IPNetP(name, "", value, usage)
}
// IPNetP is like IPNet, but accepts a shorthand letter that can be used after a single dash.
func IPNetP(name, shorthand string, value net.IPNet, usage string) *net.IPNet {
return CommandLine.IPNetP(name, shorthand, value, usage)
}

82
vendor/github.com/spf13/pflag/string.go generated vendored Normal file
View file

@ -0,0 +1,82 @@
package pflag
import "fmt"
// -- string Value
type stringValue string
func newStringValue(val string, p *string) *stringValue {
*p = val
return (*stringValue)(p)
}
func (s *stringValue) Set(val string) error {
*s = stringValue(val)
return nil
}
func (s *stringValue) Type() string {
return "string"
}
func (s *stringValue) String() string { return fmt.Sprintf("%s", *s) }
func stringConv(sval string) (interface{}, error) {
return sval, nil
}
// GetString return the string value of a flag with the given name
func (f *FlagSet) GetString(name string) (string, error) {
val, err := f.getFlagType(name, "string", stringConv)
if err != nil {
return "", err
}
return val.(string), nil
}
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func (f *FlagSet) StringVar(p *string, name string, value string, usage string) {
f.VarP(newStringValue(value, p), name, "", usage)
}
// StringVarP is like StringVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringVarP(p *string, name, shorthand string, value string, usage string) {
f.VarP(newStringValue(value, p), name, shorthand, usage)
}
// StringVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a string variable in which to store the value of the flag.
func StringVar(p *string, name string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, "", usage)
}
// StringVarP is like StringVar, but accepts a shorthand letter that can be used after a single dash.
func StringVarP(p *string, name, shorthand string, value string, usage string) {
CommandLine.VarP(newStringValue(value, p), name, shorthand, usage)
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func (f *FlagSet) String(name string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, "", value, usage)
return p
}
// StringP is like String, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringP(name, shorthand string, value string, usage string) *string {
p := new(string)
f.StringVarP(p, name, shorthand, value, usage)
return p
}
// String defines a string flag with specified name, default value, and usage string.
// The return value is the address of a string variable that stores the value of the flag.
func String(name string, value string, usage string) *string {
return CommandLine.StringP(name, "", value, usage)
}
// StringP is like String, but accepts a shorthand letter that can be used after a single dash.
func StringP(name, shorthand string, value string, usage string) *string {
return CommandLine.StringP(name, shorthand, value, usage)
}

111
vendor/github.com/spf13/pflag/string_slice.go generated vendored Normal file
View file

@ -0,0 +1,111 @@
package pflag
import (
"encoding/csv"
"fmt"
"strings"
)
var _ = fmt.Fprint
// -- stringSlice Value
type stringSliceValue struct {
value *[]string
changed bool
}
func newStringSliceValue(val []string, p *[]string) *stringSliceValue {
ssv := new(stringSliceValue)
ssv.value = p
*ssv.value = val
return ssv
}
func (s *stringSliceValue) Set(val string) error {
stringReader := strings.NewReader(val)
csvReader := csv.NewReader(stringReader)
v, err := csvReader.Read()
if err != nil {
return err
}
if !s.changed {
*s.value = v
} else {
*s.value = append(*s.value, v...)
}
s.changed = true
return nil
}
func (s *stringSliceValue) Type() string {
return "stringSlice"
}
func (s *stringSliceValue) String() string { return "[" + strings.Join(*s.value, ",") + "]" }
func stringSliceConv(sval string) (interface{}, error) {
sval = strings.Trim(sval, "[]")
// An empty string would cause a slice with one (empty) string
if len(sval) == 0 {
return []string{}, nil
}
v := strings.Split(sval, ",")
return v, nil
}
// GetStringSlice return the []string value of a flag with the given name
func (f *FlagSet) GetStringSlice(name string) ([]string, error) {
val, err := f.getFlagType(name, "stringSlice", stringSliceConv)
if err != nil {
return []string{}, err
}
return val.([]string), nil
}
// StringSliceVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
func (f *FlagSet) StringSliceVar(p *[]string, name string, value []string, usage string) {
f.VarP(newStringSliceValue(value, p), name, "", usage)
}
// StringSliceVarP is like StringSliceVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringSliceVarP(p *[]string, name, shorthand string, value []string, usage string) {
f.VarP(newStringSliceValue(value, p), name, shorthand, usage)
}
// StringSliceVar defines a string flag with specified name, default value, and usage string.
// The argument p points to a []string variable in which to store the value of the flag.
func StringSliceVar(p *[]string, name string, value []string, usage string) {
CommandLine.VarP(newStringSliceValue(value, p), name, "", usage)
}
// StringSliceVarP is like StringSliceVar, but accepts a shorthand letter that can be used after a single dash.
func StringSliceVarP(p *[]string, name, shorthand string, value []string, usage string) {
CommandLine.VarP(newStringSliceValue(value, p), name, shorthand, usage)
}
// StringSlice defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
func (f *FlagSet) StringSlice(name string, value []string, usage string) *[]string {
p := []string{}
f.StringSliceVarP(&p, name, "", value, usage)
return &p
}
// StringSliceP is like StringSlice, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) StringSliceP(name, shorthand string, value []string, usage string) *[]string {
p := []string{}
f.StringSliceVarP(&p, name, shorthand, value, usage)
return &p
}
// StringSlice defines a string flag with specified name, default value, and usage string.
// The return value is the address of a []string variable that stores the value of the flag.
func StringSlice(name string, value []string, usage string) *[]string {
return CommandLine.StringSliceP(name, "", value, usage)
}
// StringSliceP is like StringSlice, but accepts a shorthand letter that can be used after a single dash.
func StringSliceP(name, shorthand string, value []string, usage string) *[]string {
return CommandLine.StringSliceP(name, shorthand, value, usage)
}

91
vendor/github.com/spf13/pflag/uint.go generated vendored Normal file
View file

@ -0,0 +1,91 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint Value
type uintValue uint
func newUintValue(val uint, p *uint) *uintValue {
*p = val
return (*uintValue)(p)
}
func (i *uintValue) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uintValue(v)
return err
}
func (i *uintValue) Type() string {
return "uint"
}
func (i *uintValue) String() string { return fmt.Sprintf("%v", *i) }
func uintConv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 0)
if err != nil {
return 0, err
}
return uint(v), nil
}
// GetUint return the uint value of a flag with the given name
func (f *FlagSet) GetUint(name string) (uint, error) {
val, err := f.getFlagType(name, "uint", uintConv)
if err != nil {
return 0, err
}
return val.(uint), nil
}
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) UintVar(p *uint, name string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, "", usage)
}
// UintVarP is like UintVar, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintVarP(p *uint, name, shorthand string, value uint, usage string) {
f.VarP(newUintValue(value, p), name, shorthand, usage)
}
// UintVar defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func UintVar(p *uint, name string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, "", usage)
}
// UintVarP is like UintVar, but accepts a shorthand letter that can be used after a single dash.
func UintVarP(p *uint, name, shorthand string, value uint, usage string) {
CommandLine.VarP(newUintValue(value, p), name, shorthand, usage)
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint(name string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, "", value, usage)
return p
}
// UintP is like Uint, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) UintP(name, shorthand string, value uint, usage string) *uint {
p := new(uint)
f.UintVarP(p, name, shorthand, value, usage)
return p
}
// Uint defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint(name string, value uint, usage string) *uint {
return CommandLine.UintP(name, "", value, usage)
}
// UintP is like Uint, but accepts a shorthand letter that can be used after a single dash.
func UintP(name, shorthand string, value uint, usage string) *uint {
return CommandLine.UintP(name, shorthand, value, usage)
}

89
vendor/github.com/spf13/pflag/uint16.go generated vendored Normal file
View file

@ -0,0 +1,89 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint16 value
type uint16Value uint16
func newUint16Value(val uint16, p *uint16) *uint16Value {
*p = val
return (*uint16Value)(p)
}
func (i *uint16Value) String() string { return fmt.Sprintf("%d", *i) }
func (i *uint16Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 16)
*i = uint16Value(v)
return err
}
func (i *uint16Value) Type() string {
return "uint16"
}
func uint16Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 16)
if err != nil {
return 0, err
}
return uint16(v), nil
}
// GetUint16 return the uint16 value of a flag with the given name
func (f *FlagSet) GetUint16(name string) (uint16, error) {
val, err := f.getFlagType(name, "uint16", uint16Conv)
if err != nil {
return 0, err
}
return val.(uint16), nil
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func (f *FlagSet) Uint16Var(p *uint16, name string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, "", usage)
}
// Uint16VarP is like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
f.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16Var defines a uint flag with specified name, default value, and usage string.
// The argument p points to a uint variable in which to store the value of the flag.
func Uint16Var(p *uint16, name string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, "", usage)
}
// Uint16VarP is like Uint16Var, but accepts a shorthand letter that can be used after a single dash.
func Uint16VarP(p *uint16, name, shorthand string, value uint16, usage string) {
CommandLine.VarP(newUint16Value(value, p), name, shorthand, usage)
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func (f *FlagSet) Uint16(name string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, "", value, usage)
return p
}
// Uint16P is like Uint16, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
p := new(uint16)
f.Uint16VarP(p, name, shorthand, value, usage)
return p
}
// Uint16 defines a uint flag with specified name, default value, and usage string.
// The return value is the address of a uint variable that stores the value of the flag.
func Uint16(name string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, "", value, usage)
}
// Uint16P is like Uint16, but accepts a shorthand letter that can be used after a single dash.
func Uint16P(name, shorthand string, value uint16, usage string) *uint16 {
return CommandLine.Uint16P(name, shorthand, value, usage)
}

89
vendor/github.com/spf13/pflag/uint32.go generated vendored Normal file
View file

@ -0,0 +1,89 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint16 value
type uint32Value uint32
func newUint32Value(val uint32, p *uint32) *uint32Value {
*p = val
return (*uint32Value)(p)
}
func (i *uint32Value) String() string { return fmt.Sprintf("%d", *i) }
func (i *uint32Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 32)
*i = uint32Value(v)
return err
}
func (i *uint32Value) Type() string {
return "uint32"
}
func uint32Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 32)
if err != nil {
return 0, err
}
return uint32(v), nil
}
// GetUint32 return the uint32 value of a flag with the given name
func (f *FlagSet) GetUint32(name string) (uint32, error) {
val, err := f.getFlagType(name, "uint32", uint32Conv)
if err != nil {
return 0, err
}
return val.(uint32), nil
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func (f *FlagSet) Uint32Var(p *uint32, name string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, "", usage)
}
// Uint32VarP is like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
f.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32Var defines a uint32 flag with specified name, default value, and usage string.
// The argument p points to a uint32 variable in which to store the value of the flag.
func Uint32Var(p *uint32, name string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, "", usage)
}
// Uint32VarP is like Uint32Var, but accepts a shorthand letter that can be used after a single dash.
func Uint32VarP(p *uint32, name, shorthand string, value uint32, usage string) {
CommandLine.VarP(newUint32Value(value, p), name, shorthand, usage)
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func (f *FlagSet) Uint32(name string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, "", value, usage)
return p
}
// Uint32P is like Uint32, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
p := new(uint32)
f.Uint32VarP(p, name, shorthand, value, usage)
return p
}
// Uint32 defines a uint32 flag with specified name, default value, and usage string.
// The return value is the address of a uint32 variable that stores the value of the flag.
func Uint32(name string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, "", value, usage)
}
// Uint32P is like Uint32, but accepts a shorthand letter that can be used after a single dash.
func Uint32P(name, shorthand string, value uint32, usage string) *uint32 {
return CommandLine.Uint32P(name, shorthand, value, usage)
}

91
vendor/github.com/spf13/pflag/uint64.go generated vendored Normal file
View file

@ -0,0 +1,91 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint64 Value
type uint64Value uint64
func newUint64Value(val uint64, p *uint64) *uint64Value {
*p = val
return (*uint64Value)(p)
}
func (i *uint64Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 64)
*i = uint64Value(v)
return err
}
func (i *uint64Value) Type() string {
return "uint64"
}
func (i *uint64Value) String() string { return fmt.Sprintf("%v", *i) }
func uint64Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 64)
if err != nil {
return 0, err
}
return uint64(v), nil
}
// GetUint64 return the uint64 value of a flag with the given name
func (f *FlagSet) GetUint64(name string) (uint64, error) {
val, err := f.getFlagType(name, "uint64", uint64Conv)
if err != nil {
return 0, err
}
return val.(uint64), nil
}
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func (f *FlagSet) Uint64Var(p *uint64, name string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, "", usage)
}
// Uint64VarP is like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
f.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64Var defines a uint64 flag with specified name, default value, and usage string.
// The argument p points to a uint64 variable in which to store the value of the flag.
func Uint64Var(p *uint64, name string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, "", usage)
}
// Uint64VarP is like Uint64Var, but accepts a shorthand letter that can be used after a single dash.
func Uint64VarP(p *uint64, name, shorthand string, value uint64, usage string) {
CommandLine.VarP(newUint64Value(value, p), name, shorthand, usage)
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func (f *FlagSet) Uint64(name string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, "", value, usage)
return p
}
// Uint64P is like Uint64, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
p := new(uint64)
f.Uint64VarP(p, name, shorthand, value, usage)
return p
}
// Uint64 defines a uint64 flag with specified name, default value, and usage string.
// The return value is the address of a uint64 variable that stores the value of the flag.
func Uint64(name string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, "", value, usage)
}
// Uint64P is like Uint64, but accepts a shorthand letter that can be used after a single dash.
func Uint64P(name, shorthand string, value uint64, usage string) *uint64 {
return CommandLine.Uint64P(name, shorthand, value, usage)
}

91
vendor/github.com/spf13/pflag/uint8.go generated vendored Normal file
View file

@ -0,0 +1,91 @@
package pflag
import (
"fmt"
"strconv"
)
// -- uint8 Value
type uint8Value uint8
func newUint8Value(val uint8, p *uint8) *uint8Value {
*p = val
return (*uint8Value)(p)
}
func (i *uint8Value) Set(s string) error {
v, err := strconv.ParseUint(s, 0, 8)
*i = uint8Value(v)
return err
}
func (i *uint8Value) Type() string {
return "uint8"
}
func (i *uint8Value) String() string { return fmt.Sprintf("%v", *i) }
func uint8Conv(sval string) (interface{}, error) {
v, err := strconv.ParseUint(sval, 0, 8)
if err != nil {
return 0, err
}
return uint8(v), nil
}
// GetUint8 return the uint8 value of a flag with the given name
func (f *FlagSet) GetUint8(name string) (uint8, error) {
val, err := f.getFlagType(name, "uint8", uint8Conv)
if err != nil {
return 0, err
}
return val.(uint8), nil
}
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func (f *FlagSet) Uint8Var(p *uint8, name string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, "", usage)
}
// Uint8VarP is like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
f.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8Var defines a uint8 flag with specified name, default value, and usage string.
// The argument p points to a uint8 variable in which to store the value of the flag.
func Uint8Var(p *uint8, name string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, "", usage)
}
// Uint8VarP is like Uint8Var, but accepts a shorthand letter that can be used after a single dash.
func Uint8VarP(p *uint8, name, shorthand string, value uint8, usage string) {
CommandLine.VarP(newUint8Value(value, p), name, shorthand, usage)
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func (f *FlagSet) Uint8(name string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, "", value, usage)
return p
}
// Uint8P is like Uint8, but accepts a shorthand letter that can be used after a single dash.
func (f *FlagSet) Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
p := new(uint8)
f.Uint8VarP(p, name, shorthand, value, usage)
return p
}
// Uint8 defines a uint8 flag with specified name, default value, and usage string.
// The return value is the address of a uint8 variable that stores the value of the flag.
func Uint8(name string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, "", value, usage)
}
// Uint8P is like Uint8, but accepts a shorthand letter that can be used after a single dash.
func Uint8P(name, shorthand string, value uint8, usage string) *uint8 {
return CommandLine.Uint8P(name, shorthand, value, usage)
}

22
vendor/github.com/tdewolff/buffer/LICENSE.md generated vendored Normal file
View file

@ -0,0 +1,22 @@
Copyright (c) 2015 Taco de Wolff
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

42
vendor/github.com/tdewolff/buffer/README.md generated vendored Normal file
View file

@ -0,0 +1,42 @@
# Buffer [![GoDoc](http://godoc.org/github.com/tdewolff/buffer?status.svg)](http://godoc.org/github.com/tdewolff/buffer)
This package contains several buffer types used in https://github.com/tdewolff/parse for example.
## Installation
Run the following command
go get github.com/tdewolff/buffer
or add the following import and run the project with `go get`
``` go
import "github.com/tdewolff/buffer"
```
## Reader
Reader is a wrapper around a `[]byte` that implements the `io.Reader` interface. It is a much thinner layer than `bytes.Buffer` provides and is therefore faster.
## Writer
Writer is a buffer that implements the `io.Writer` interface. It is a much thinner layer than `bytes.Buffer` provides and is therefore faster. It will expand the buffer when needed.
The reset functionality allows for better memory reuse. After calling `Reset`, it will overwrite the current buffer and thus reduce allocations.
## Shifter
Shifter is a read buffer specifically for building lexers. It reads in chunks from an `io.Reader` and allows to keep track two positions: the start and end position. The start position is the beginning of the current token being parsed, the end position is being moved forward until a valid token is found. Calling `Shift` will collapse the positions to the end and return the parsed `[]byte`.
Moving the end position can go through `Move(int)` which also accepts negative integers or `MoveTo(int)` where the integer will be the new length of the selected bytes. `MoveTo(int)` is useful when you saved a previous position through `Pos() int` and want to return to that position.
`Peek(int) byte` will peek forward (relative to the end position, ie. the position set with Move/MoveTo) and return the byte at that location. `PeekRune(int) (rune, int)` returns UTF-8 runes and its length at the given **byte** position. Consecutive calls to Peek **may invalidate previously returned byte slices**. So if you need to use the content of a byte slice after the next call to `Peek(int) byte`, it needs to be copied in principal (see exception below).
`Bytes() []byte` will return the currently selected bytes, `Skip()` will collapse the selection. `Shift() []byte` is a combination of `Bytes() []byte` and `Skip()`.
When the internal `io.Reader` returned an error, `Err() error` will return that error (even if subsequent peeks are still possible). If `Peek(int) byte` returns `0` when an error occurred. `IsEOF() bool` is a faster alternative than `Err() == io.EOF`, if it returns true it means the internal buffer will not be reallocated/overwritten. So returned byte slices need not be copied for use after subsequent `Peek(int) byte` calls. When the `io.Reader` provides the `Bytes() []byte` function (which `Reader` does in this package), it will use that buffer instead and thus `IsEOF()` returns always `true` (ie. copying returned slices is not needed).
## Lexer
Lexer is an improvement over Shifter in that it does not need the returned byte slices to be copied. Instead you can call `ShiftLen() int`, which returns the number of bytes that have been shifted since the previous call to `ShiftLen`, and use that to specify how many bytes need to be freed up from the buffer. Calling `Free(n int)` frees up `n` bytes from the internal buffer(s). It holds an array of buffers to accomodate for keeping everything in-memory. If you don't need to keep returned byte slices around, call `Free(ShiftLen())` after every `Shift` call.
The `MoveTo(int)` function has been renamed to `Rewind(int)` to fit its meaning better. Also `Bytes() []byte` has been renamed to `Lexeme() []byte` for the same reason.
## License
Released under the [MIT license](LICENSE.md).
[1]: http://golang.org/ "Go Language"

15
vendor/github.com/tdewolff/buffer/buffer.go generated vendored Normal file
View file

@ -0,0 +1,15 @@
/*
Package buffer contains buffer and wrapper types for byte slices. It is useful for writing lexers or other high-performance byte slice handling.
The `Reader` and `Writer` types implement the `io.Reader` and `io.Writer` respectively and provide a thinner and faster interface than `bytes.Buffer`.
The `Shifter` type is useful for building lexers because it keeps track of the start and end position of a byte selection, and shifts the bytes whenever a valid token is found.
The `Lexer` is however an improved version of `Shifter`, allowing zero-copy for the parser by using a (kind of) ring buffer underneath.
*/
package buffer
// defaultBufSize specifies the default initial length of internal buffers.
var defaultBufSize = 4096
// MinBuf specifies the default initial length of internal buffers.
// Solely here to support old versions of parse.
var MinBuf = defaultBufSize

221
vendor/github.com/tdewolff/buffer/lexer.go generated vendored Normal file
View file

@ -0,0 +1,221 @@
package buffer
import "io"
type block struct {
buf []byte
next int // index in pool plus one
active bool
}
type bufferPool struct {
pool []block
head int // index in pool plus one
tail int // index in pool plus one
pos int // byte pos in tail
}
func (z *bufferPool) swap(oldBuf []byte, size int) []byte {
// find new buffer that can be reused
swap := -1
for i := 0; i < len(z.pool); i++ {
if !z.pool[i].active && size <= cap(z.pool[i].buf) {
swap = i
break
}
}
if swap == -1 { // no free buffer found for reuse
if z.tail == 0 && z.pos >= len(oldBuf) && size <= cap(oldBuf) { // but we can reuse the current buffer!
z.pos -= len(oldBuf)
return oldBuf[:0]
}
// allocate new
z.pool = append(z.pool, block{make([]byte, 0, size), 0, true})
swap = len(z.pool) - 1
}
newBuf := z.pool[swap].buf
// put current buffer into pool
z.pool[swap] = block{oldBuf, 0, true}
if z.head != 0 {
z.pool[z.head-1].next = swap + 1
}
z.head = swap + 1
if z.tail == 0 {
z.tail = swap + 1
}
return newBuf[:0]
}
func (z *bufferPool) free(n int) {
z.pos += n
// move the tail over to next buffers
for z.tail != 0 && z.pos >= len(z.pool[z.tail-1].buf) {
z.pos -= len(z.pool[z.tail-1].buf)
newTail := z.pool[z.tail-1].next
z.pool[z.tail-1].active = false // after this, any thread may pick up the inactive buffer, so it can't be used anymore
z.tail = newTail
}
if z.tail == 0 {
z.head = 0
}
}
// Lexer is a buffered reader that allows peeking forward and shifting, taking an io.Reader.
// It keeps data in-memory until Free, taking a byte length, is called to move beyond the data.
type Lexer struct {
r io.Reader
err error
pool bufferPool
buf []byte
start int // index in buf
pos int // index in buf
prevStart int
free int
}
// NewLexer returns a new Lexer for a given io.Reader with a 4kB estimated buffer size.
// If the io.Reader implements Bytes, that buffer is used instead.
func NewLexer(r io.Reader) *Lexer {
return NewLexerSize(r, defaultBufSize)
}
// NewLexerSize returns a new Lexer for a given io.Reader and estimated required buffer size.
// If the io.Reader implements Bytes, that buffer is used instead.
func NewLexerSize(r io.Reader, size int) *Lexer {
// if reader has the bytes in memory already, use that instead
if buffer, ok := r.(interface {
Bytes() []byte
}); ok {
return &Lexer{
err: io.EOF,
buf: buffer.Bytes(),
}
}
return &Lexer{
r: r,
buf: make([]byte, 0, size),
}
}
func (z *Lexer) read(pos int) byte {
if z.err != nil {
return 0
}
// free unused bytes
z.pool.free(z.free)
z.free = 0
// get new buffer
c := cap(z.buf)
p := pos - z.start + 1
if 2*p > c { // if the token is larger than half the buffer, increase buffer size
c = 2*c + p
}
d := len(z.buf) - z.start
buf := z.pool.swap(z.buf[:z.start], c)
copy(buf[:d], z.buf[z.start:]) // copy the left-overs (unfinished token) from the old buffer
// read in new data for the rest of the buffer
var n int
n, z.err = z.r.Read(buf[d:cap(buf)])
pos -= z.start
z.pos -= z.start
z.start, z.buf = 0, buf[:d+n]
if pos >= d+n {
if z.err == nil {
z.err = io.EOF
}
return 0
}
return z.buf[pos]
}
// Err returns the error returned from io.Reader. It may still return valid bytes for a while though.
func (z *Lexer) Err() error {
if z.err == io.EOF && z.pos < len(z.buf) {
return nil
}
return z.err
}
// Free frees up bytes of length n from previously shifted tokens.
// Each call to Shift should at one point be followed by a call to Free with a length returned by ShiftLen.
func (z *Lexer) Free(n int) {
z.free += n
}
// Peek returns the ith byte relative to the end position and possibly does an allocation.
// Peek returns zero when an error has occurred, Err returns the error.
// TODO: inline function
func (z *Lexer) Peek(pos int) byte {
pos += z.pos
if uint(pos) < uint(len(z.buf)) { // uint for BCE
return z.buf[pos]
}
return z.read(pos)
}
// PeekRune returns the rune and rune length of the ith byte relative to the end position.
func (z *Lexer) PeekRune(pos int) (rune, int) {
// from unicode/utf8
c := z.Peek(pos)
if c < 0xC0 {
return rune(c), 1
} else if c < 0xE0 {
return rune(c&0x1F)<<6 | rune(z.Peek(pos+1)&0x3F), 2
} else if c < 0xF0 {
return rune(c&0x0F)<<12 | rune(z.Peek(pos+1)&0x3F)<<6 | rune(z.Peek(pos+2)&0x3F), 3
}
return rune(c&0x07)<<18 | rune(z.Peek(pos+1)&0x3F)<<12 | rune(z.Peek(pos+2)&0x3F)<<6 | rune(z.Peek(pos+3)&0x3F), 4
}
// Move advances the position.
func (z *Lexer) Move(n int) {
z.pos += n
}
// Pos returns a mark to which can be rewinded.
func (z *Lexer) Pos() int {
return z.pos - z.start
}
// Rewind rewinds the position to the given position.
func (z *Lexer) Rewind(pos int) {
z.pos = z.start + pos
}
// Lexeme returns the bytes of the current selection.
func (z *Lexer) Lexeme() []byte {
return z.buf[z.start:z.pos]
}
// Skip collapses the position to the end of the selection.
func (z *Lexer) Skip() {
z.start = z.pos
}
// Shift returns the bytes of the current selection and collapses the position to the end of the selection.
// It also returns the number of bytes we moved since the last call to Shift. This can be used in calls to Free.
func (z *Lexer) Shift() []byte {
if z.pos > len(z.buf) { // make sure we peeked at least as much as we shift
z.read(z.pos - 1)
}
b := z.buf[z.start:z.pos]
z.start = z.pos
return b
}
// ShiftLen returns the number of bytes moved since the last call to ShiftLen. This can be used in calls to Free because it takes into account multiple Shifts or Skips.
func (z *Lexer) ShiftLen() int {
n := z.start - z.prevStart
z.prevStart = z.start
return n
}

39
vendor/github.com/tdewolff/buffer/reader.go generated vendored Normal file
View file

@ -0,0 +1,39 @@
package buffer
import "io"
// Reader implements an io.Reader over a byte slice.
type Reader struct {
buf []byte
pos int
}
// NewReader returns a new Reader for a given byte slice.
func NewReader(buf []byte) *Reader {
return &Reader{
buf: buf,
}
}
// Read reads bytes into the given byte slice and returns the number of bytes read and an error if occurred.
func (r *Reader) Read(b []byte) (n int, err error) {
if len(b) == 0 {
return 0, nil
}
if r.pos >= len(r.buf) {
return 0, io.EOF
}
n = copy(b, r.buf[r.pos:])
r.pos += n
return
}
// Bytes returns the underlying byte slice.
func (r *Reader) Bytes() []byte {
return r.buf
}
// Reset resets the position of the read pointer to the beginning of the underlying byte slice
func (r *Reader) Reset() {
r.pos = 0
}

144
vendor/github.com/tdewolff/buffer/shifter.go generated vendored Normal file
View file

@ -0,0 +1,144 @@
package buffer
import "io"
// Shifter is a buffered reader that allows peeking forward and shifting, taking an io.Reader.
type Shifter struct {
r io.Reader
err error
eof bool
buf []byte
pos int
end int
}
// NewShifter returns a new Shifter for a given io.Reader with a 4kB estimated buffer size.
// If the io.Reader implements Bytes, that buffer is used instead.
func NewShifter(r io.Reader) *Shifter {
return NewShifterSize(r, defaultBufSize)
}
// NewShifterSize returns a new Shifter for a given io.Reader and estimated required buffer size.
// If the io.Reader implements Bytes, that buffer is used instead.
func NewShifterSize(r io.Reader, size int) *Shifter {
// If reader has the bytes in memory already, use that instead!
if buffer, ok := r.(interface {
Bytes() []byte
}); ok {
return &Shifter{
err: io.EOF,
eof: true,
buf: buffer.Bytes(),
}
}
z := &Shifter{
r: r,
buf: make([]byte, 0, size),
}
z.Peek(0)
return z
}
// Err returns the error returned from io.Reader. It may still return valid bytes for a while though.
func (z *Shifter) Err() error {
if z.eof && z.end < len(z.buf) {
return nil
}
return z.err
}
// IsEOF returns true when it has encountered EOF meaning that it has loaded the last data in memory (ie. previously returned byte slice will not be overwritten by Peek).
// Calling IsEOF is faster than checking Err() == io.EOF.
func (z *Shifter) IsEOF() bool {
return z.eof
}
func (z *Shifter) read(end int) byte {
if z.err != nil {
return 0
}
// reallocate a new buffer (possibly larger)
c := cap(z.buf)
d := len(z.buf) - z.pos
var buf []byte
if 2*d > c {
buf = make([]byte, d, 2*c+end-z.pos)
} else {
buf = z.buf[:d]
}
copy(buf, z.buf[z.pos:])
// read in to fill the buffer till capacity
var n int
n, z.err = z.r.Read(buf[d:cap(buf)])
z.eof = (z.err == io.EOF)
end -= z.pos
z.end -= z.pos
z.pos, z.buf = 0, buf[:d+n]
if n == 0 {
if z.err == nil {
z.err = io.EOF
z.eof = true
}
return 0
}
return z.buf[end]
}
// Peek returns the ith byte relative to the end position and possibly does an allocation. Calling Peek may invalidate previous returned byte slices by Bytes or Shift, unless IsEOF returns true.
// Peek returns zero when an error has occurred, Err returns the error.
func (z *Shifter) Peek(end int) byte {
end += z.end
if end >= len(z.buf) {
return z.read(end)
}
return z.buf[end]
}
// PeekRune returns the rune and rune length of the ith byte relative to the end position.
func (z *Shifter) PeekRune(i int) (rune, int) {
// from unicode/utf8
c := z.Peek(i)
if c < 0xC0 {
return rune(c), 1
} else if c < 0xE0 {
return rune(c&0x1F)<<6 | rune(z.Peek(i+1)&0x3F), 2
} else if c < 0xF0 {
return rune(c&0x0F)<<12 | rune(z.Peek(i+1)&0x3F)<<6 | rune(z.Peek(i+2)&0x3F), 3
}
return rune(c&0x07)<<18 | rune(z.Peek(i+1)&0x3F)<<12 | rune(z.Peek(i+2)&0x3F)<<6 | rune(z.Peek(i+3)&0x3F), 4
}
// Move advances the end position.
func (z *Shifter) Move(n int) {
z.end += n
}
// MoveTo sets the end position.
func (z *Shifter) MoveTo(n int) {
z.end = z.pos + n
}
// Pos returns the end position.
func (z *Shifter) Pos() int {
return z.end - z.pos
}
// Bytes returns the bytes of the current selection.
func (z *Shifter) Bytes() []byte {
return z.buf[z.pos:z.end]
}
// Shift returns the bytes of the current selection and collapses the position to the end.
func (z *Shifter) Shift() []byte {
b := z.buf[z.pos:z.end]
z.pos = z.end
return b
}
// Skip collapses the position to the end.
func (z *Shifter) Skip() {
z.pos = z.end
}

41
vendor/github.com/tdewolff/buffer/writer.go generated vendored Normal file
View file

@ -0,0 +1,41 @@
package buffer
// Writer implements an io.Writer over a byte slice.
type Writer struct {
buf []byte
}
// NewWriter returns a new Writer for a given byte slice.
func NewWriter(buf []byte) *Writer {
return &Writer{
buf: buf,
}
}
// Write writes bytes from the given byte slice and returns the number of bytes written and an error if occurred. When err != nil, n == 0.
func (w *Writer) Write(b []byte) (int, error) {
n := len(b)
end := len(w.buf)
if end+n > cap(w.buf) {
buf := make([]byte, end, 2*cap(w.buf)+n)
copy(buf, w.buf)
w.buf = buf
}
w.buf = w.buf[:end+n]
return copy(w.buf[end:], b), nil
}
// Len returns the length of the underlying byte slice.
func (w *Writer) Len() int {
return len(w.buf)
}
// Bytes returns the underlying byte slice.
func (w *Writer) Bytes() []byte {
return w.buf
}
// Reset empties and reuses the current buffer. Subsequent writes will overwrite the buffer, so any reference to the underlying slice is invalidated after this call.
func (w *Writer) Reset() {
w.buf = w.buf[:0]
}

3
vendor/github.com/tdewolff/minify/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,3 @@
language: go
script:
- go test -v ./...

22
vendor/github.com/tdewolff/minify/LICENSE.md generated vendored Normal file
View file

@ -0,0 +1,22 @@
Copyright (c) 2015 Taco de Wolff
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

536
vendor/github.com/tdewolff/minify/README.md generated vendored Normal file
View file

@ -0,0 +1,536 @@
# Minify [![Build Status](https://travis-ci.org/tdewolff/minify.svg?branch=master)](https://travis-ci.org/tdewolff/minify) [![GoDoc](http://godoc.org/github.com/tdewolff/minify?status.svg)](http://godoc.org/github.com/tdewolff/minify) [![Join the chat at https://gitter.im/tdewolff/minify](https://badges.gitter.im/Join%20Chat.svg)](https://gitter.im/tdewolff/minify?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge)
**I will be away for 5 months, starting May. v2 should be the preferred stable release to use. Master has some new changes for SVG that haven't yet endured the test of time, bug reports are appreciated.**
Minify is a minifier package written in [Go][1]. It has build-in HTML5, CSS3, JS, JSON, SVG and XML minifiers and provides an interface to implement any minifier. Minification is the process of removing bytes from a file (such as whitespace) without changing its output and therefore speeding up transmission over the internet. The implemented minifiers are high performance and streaming (which implies O(n)).
It associates minification functions with mimetypes, allowing embedded resources (like CSS or JS in HTML files) to be minified too. The user can add any mime-based implementation. Users can also implement a mimetype using an external command (like the ClosureCompiler, UglifyCSS, ...). It is possible to pass parameters through the mediatype to specify the charset for example.
[Demo](http://go.tacodewolff.nl/) · [CLI](https://github.com/tdewolff/minify/tree/master/cmd/minify) · [Download](https://dl.equinox.io/tdewolff/minify/stable)
#### Table of Contents
- [Minify](#minify---)
- [Prologue](#prologue)
- [Installation](#installation)
- [API stability](#api-stability)
- [Testing](#testing)
- [HTML](#html--)
- [Whitespace removal](#whitespace-removal)
- [CSS](#css--)
- [JS](#js--)
- [JSON](#json--)
- [SVG](#svg--)
- [XML](#xml--)
- [Usage](#usage)
- [New](#new)
- [From reader](#from-reader)
- [From bytes](#from-bytes)
- [From string](#from-string)
- [Custom minifier](#custom-minifier)
- [Mediatypes](#mediatypes)
- [Examples](#examples)
- [Common minifiers](#common-minifiers)
- [Custom minifier](#custom-minifier-1)
- [ResponseWriter](#responsewriter)
- [Templates](#templates)
- [License](#license)
#### Status
* CSS: **fully implemented**
* HTML: **fully implemented**
* JS: basic JSmin-like implementation
* JSON: **fully implemented**
* SVG: partially implemented; in development
* XML: **fully implemented**
## Prologue
Minifiers or bindings to minifiers exist in almost all programming languages. Some implementations are merely using several regular-expressions to trim whitespace and comments (even though regex for parsing HTML/XML is ill-advised, for a good read see [Regular Expressions: Now You Have Two Problems](http://blog.codinghorror.com/regular-expressions-now-you-have-two-problems/)). Some implementations are much more profound, such as the [YUI Compressor](http://yui.github.io/yuicompressor/) and [Google Closure Compiler](https://github.com/google/closure-compiler) for JS. As most existing implementations either use Java or JavaScript and don't focus on performance, they are pretty slow. And loading the whole file into memory is bad for really large files (or impossible for infinite streams).
This minifier proves to be that fast and extensive minifier that can handle HTML and any other filetype it may contain (CSS, JS, ...). It streams the input and output and can minify files concurrently.
## Installation
Run the following command
go get github.com/tdewolff/minify
or add the following imports and run the project with `go get`
``` go
import (
"github.com/tdewolff/minify"
"github.com/tdewolff/minify/css"
"github.com/tdewolff/minify/html"
"github.com/tdewolff/minify/js"
"github.com/tdewolff/minify/json"
"github.com/tdewolff/minify/svg"
"github.com/tdewolff/minify/xml"
)
```
## API stability
There is no guarantee for absolute stability, but I take issues and bugs seriously and don't take API changes lightly. The library will be maintained in a compatible way unless vital bugs prevent me from doing so. There has been one API change after v1 which added options support and I took the opportunity to push through some more API clean up as well. There are no plans whatsoever for future API changes.
- minify-v1.0.0 depends on parse-v1.0.0
- minify-v1.1.0 depends on parse-v1.1.0
- minify-v2.0.0 depends on parse-v2.0.0
- minify-tip will always compile with my other packages on tip
The API differences between v1 and v2 are listed below. If `m := minify.New()` and `w` and `r` are your writer and reader respectfully, then **v1** &#8594; **v2**:
- `minify.Bytes(m, ...)` &#8594; `m.Bytes(...)`
- `minify.String(m, ...)` &#8594; `m.String(...)`
- `html.Minify(m, "text/html", w, r)` &#8594; `html.Minify(m, w, r, nil)` also for `css`, `js`, ...
- `css.Minify(m, "text/css;inline=1", w, r)` &#8594; `css.Minify(m, w, r, map[string]string{"inline":"1"})`
## Testing
For all subpackages and the imported `parse` and `buffer` packages, test coverage of 100% is pursued. Besides full coverage, the minifiers are [fuzz tested](https://github.com/tdewolff/fuzz) using [github.com/dvyukov/go-fuzz](http://www.github.com/dvyukov/go-fuzz), see [the wiki](https://github.com/tdewolff/minify/wiki) for the most important bugs found by fuzz testing. Furthermore am I working on adding visual testing to ensure that minification doesn't change anything visually. By using the WebKit browser to render the original and minified pages we can check whether any pixel is different.
These tests ensure that everything works as intended, the code does not crash (whatever the input) and that it doesn't change the final result visually. If you still encounter a bug, please report [here](https://github.com/tdewolff/minify/issues)!
## HTML
HTML (with JS and CSS) minification typically runs at about 40MB/s ~= 140GB/h, depending on the composition of the file.
Website | Original | Minified | Ratio | Time<sup>&#42;</sup>
------- | -------- | -------- | ----- | -----------------------
[Amazon](http://www.amazon.com/) | 463kB | **414kB** | 90% | 11ms
[BBC](http://www.bbc.com/) | 113kB | **96kB** | 85% | 3ms
[StackOverflow](http://stackoverflow.com/) | 201kB | **182kB** | 91% | 5ms
[Wikipedia](http://en.wikipedia.org/wiki/President_of_the_United_States) | 435kB | **410kB** | 94%<sup>&#42;&#42;</sup> | 10ms
<sup>&#42;</sup>These times are measured on my home computer which is an average development computer. The duration varies a lot but it's important to see it's in the 10ms range! The benchmark uses all the minifiers and excludes reading from and writing to the file from the measurement.
<sup>&#42;&#42;</sup>Is already somewhat minified, so this doesn't reflect the full potential of this minifier.
The HTML5 minifier uses these minifications:
- strip unnecessary whitespace and otherwise collapse it to one space (or newline if it originally contained a newline)
- strip superfluous quotes, or uses single/double quotes whichever requires fewer escapes
- strip default attribute values and attribute boolean values
- strip some empty attributes
- strip unrequired tags (`html`, `head`, `body`, ...)
- strip unrequired end tags (`tr`, `td`, `li`, ... and often `p`)
- strip default protocols (`http:`, `https:` and `javascript:`)
- strip comments (except conditional comments)
- shorten `doctype` and `meta` charset
- lowercase tags, attributes and some values to enhance gzip compression
Options:
- `KeepDefaultAttrVals` do not remove default attribute value such as `<script type="text/javascript">`
- `KeepWhitespace` do not remove whitespace between inline tags but still collapse multiple whitespace characters into one
After recent benchmarking and profiling it became really fast and minifies pages in the 10ms range, making it viable for on-the-fly minification.
However, be careful when doing on-the-fly minification. Minification typically trims off 10% and does this at worst around about 20MB/s. This means users have to download slower than 2MB/s to make on-the-fly minification worthwhile. This may or may not apply in your situation. Rather use caching!
### Whitespace removal
The whitespace removal mechanism collapses all sequences of whitespace (spaces, newlines, tabs) to a single space. If the sequence contained a newline or carriage return it will collapse into a newline character instead. It trims all text parts (in between tags) depending on whether it was preceded by a space from a previous piece of text and whether it is followed up by a block element or an inline element. In the former case we can omit spaces while for inline elements whitespace has significance.
Make sure your HTML doesn't depend on whitespace between `block` elements that have been changed to `inline` or `inline-block` elements using CSS. Your layout *should not* depend on those whitespaces as the minifier will remove them. An example is a menu consisting of multiple `<li>` that have `display:inline-block` applied and have whitespace in between them. It is bad practise to rely on whitespace for element positioning anyways!
## CSS
Minification typically runs at about 25MB/s ~= 90GB/h.
Library | Original | Minified | Ratio | Time<sup>&#42;</sup>
------- | -------- | -------- | ----- | -----------------------
[Bootstrap](http://getbootstrap.com/) | 134kB | **111kB** | 83% | 5ms
[Gumby](http://gumbyframework.com/) | 182kB | **167kB** | 90% | 7ms
<sup>&#42;</sup>The benchmark excludes the time reading from and writing to a file from the measurement.
The CSS minifier will only use safe minifications:
- remove comments and unnecessary whitespace
- remove trailing semicolons
- optimize `margin`, `padding` and `border-width` number of sides
- shorten numbers by removing unnecessary `+` and zeros and rewriting with/without exponent
- remove dimension and percentage for zero values
- remove quotes for URLs
- remove quotes for font families and make lowercase
- rewrite hex colors to/from color names, or to 3 digit hex
- rewrite `rgb(`, `rgba(`, `hsl(` and `hsla(` colors to hex or name
- replace `normal` and `bold` by numbers for `font-weight` and `font`
- replace `none` &#8594; `0` for `border`, `background` and `outline`
- lowercase all identifiers except classes, IDs and URLs to enhance gzip compression
- shorten MS alpha function
- rewrite data URIs with base64 or ASCII whichever is shorter
- calls minifier for data URI mediatypes, thus you can compress embedded SVG files if you have that minifier attached
It does purposely not use the following techniques:
- (partially) merge rulesets
- (partially) split rulesets
- collapse multiple declarations when main declaration is defined within a ruleset (don't put `font-weight` within an already existing `font`, too complex)
- remove overwritten properties in ruleset (this not always overwrites it, for example with `!important`)
- rewrite properties into one ruleset if possible (like `margin-top`, `margin-right`, `margin-bottom` and `margin-left` &#8594; `margin`)
- put nested ID selector at the front (`body > div#elem p` &#8594; `#elem p`)
- rewrite attribute selectors for IDs and classes (`div[id=a]` &#8594; `div#a`)
- put space after pseudo-selectors (IE6 is old, move on!)
It's great that so many other tools make comparison tables: [CSS Minifier Comparison](http://www.codenothing.com/benchmarks/css-compressor-3.0/full.html), [CSS minifiers comparison](http://www.phpied.com/css-minifiers-comparison/) and [CleanCSS tests](http://goalsmashers.github.io/css-minification-benchmark/). From the last link, this CSS minifier is almost without doubt the fastest and has near-perfect minification rates. It falls short with the purposely not implemented and often unsafe techniques, so that's fine.
## JS
The JS minifier is pretty basic. It removes comments, whitespace and line breaks whenever it can. It employs all the rules that [JSMin](http://www.crockford.com/javascript/jsmin.html) does too, but has additional improvements. For example the prefix-postfix bug is fixed.
Minification typically runs at about 45MB/s ~= 160GB/h. Common speeds of PHP and JS implementations are about 100-300kB/s (see [Uglify2](http://lisperator.net/uglifyjs/), [Adventures in PHP web asset minimization](https://www.happyassassin.net/2014/12/29/adventures-in-php-web-asset-minimization/)).
Library | Original | Minified | Ratio | Time<sup>&#42;</sup>
------- | -------- | -------- | ----- | -----------------------
[ACE](https://github.com/ajaxorg/ace-builds) | 630kB | **442kB** | 70% | 14ms
[jQuery](http://jquery.com/download/) | 242kB | **130kB** | 54% | 5ms
[jQuery UI](http://jqueryui.com/download/) | 459kB | **300kB** | 65% | 11ms
[Moment](http://momentjs.com/) | 97kB | **51kB** | 52% | 2ms
<sup>&#42;</sup>The benchmark excludes the time reading from and writing to a file from the measurement.
TODO:
- shorten local variables / function parameters names
- precise semicolon and newline omission
## JSON
Minification typically runs at about 95MB/s ~= 340GB/h. It shaves off about 15% of filesize for common indented JSON such as generated by [JSON Generator](http://www.json-generator.com/).
The JSON minifier only removes whitespace, which is the only thing that can be left out.
## SVG
Minification typically runs at about 15MB/s ~= 55GB/h. Performance improvement are due.
The SVG minifier uses these minifications:
- trim and collapse whitespace between all tags
- strip comments, empty `doctype`, XML prelude, `metadata`
- strip SVG version
- strip CDATA sections wherever possible
- collapse tags with no content to a void tag
- collapse empty container tags (`g`, `svg`, ...)
- minify style tag and attributes with the CSS minifier
- minify colors
- shorten lengths and numbers and remove default `px` unit
- shorten `path` data
- convert `rect`, `line`, `polygon`, `polyline` to `path`
- use relative or absolute positions in path data whichever is shorter
TODO:
- convert attributes to style attribute whenever shorter
- merge path data? (same style and no intersection -- the latter is difficult)
- truncate decimals
## XML
Minification typically runs at about 70MB/s ~= 250GB/h.
The XML minifier uses these minifications:
- strip unnecessary whitespace and otherwise collapse it to one space (or newline if it originally contained a newline)
- strip comments
- collapse tags with no content to a void tag
- strip CDATA sections wherever possible
Options:
- `KeepWhitespace` do not remove whitespace between inline tags but still collapse multiple whitespace characters into one
## Usage
Any input stream is being buffered by the minification functions. This is how the underlying buffer package inherently works to ensure high performance. The output stream however is not buffer. It is wise to preallocate a buffer as big as the input to which the output is written, or otherwise use `bufio` to buffer to a streaming writer.
### New
Retrieve a minifier struct which holds a map of mediatype &#8594; minifier functions.
``` go
m := minify.New()
```
The following loads all provided minifiers.
``` go
m := minify.New()
m.AddFunc("text/css", css.Minify)
m.AddFunc("text/html", html.Minify)
m.AddFunc("text/javascript", js.Minify)
m.AddFunc("image/svg+xml", svg.Minify)
m.AddFuncRegexp(regexp.MustCompile("[/+]json$"), json.Minify)
m.AddFuncRegexp(regexp.MustCompile("[/+]xml$"), xml.Minify)
```
You can set options to several minifiers.
``` go
m.Add("text/html", &html.Minifier{
KeepDefaultAttrVals: true,
KeepWhitespace: true,
})
```
### From reader
Minify from an `io.Reader` to an `io.Writer` for a specific mediatype.
``` go
if err := m.Minify(mediatype, w, r); err != nil {
panic(err)
}
```
Minify formats directly from an `io.Reader` to an `io.Writer`. The `params map[string]string` would contain the mediatype parameters, pass `nil` if non-existent.
``` go
if err := css.Minify(m, w, r, params); err != nil {
panic(err)
}
if err := html.Minify(m, w, r, params); err != nil {
panic(err)
}
if err := js.Minify(m, w, r, params); err != nil {
panic(err)
}
if err := json.Minify(m, w, r, params); err != nil {
panic(err)
}
if err := svg.Minify(m, w, r, params); err != nil {
panic(err)
}
if err := xml.Minify(m, w, r, params); err != nil {
panic(err)
}
```
### From bytes
Minify from and to a `[]byte` for a specific mediatype.
``` go
b, err = m.Bytes(mediatype, b)
if err != nil {
panic(err)
}
```
### From string
Minify from and to a `string` for a specific mediatype.
``` go
s, err = m.String(mediatype, s)
if err != nil {
panic(err)
}
```
### From reader
Get a minifying reader for a specific mediatype.
``` go
mr := m.Reader(mediatype, r)
if _, err := mr.Read(b); err != nil {
panic(err)
}
```
### From writer
Get a minifying writer for a specific mediatype. Must be explicitly closed because it uses an `io.Pipe` underneath.
``` go
mw := m.Writer(mediatype, w)
mw.Write([]byte("input"))
if err := mw.Close(); err != nil {
panic(err)
}
```
### Custom minifier
Add a minifier for a specific mimetype.
``` go
type CustomMinifier struct {
KeepLineBreaks bool
}
func (c *CustomMinifier) Minify(m *minify.M, w io.Writer, r io.Reader, params map[string]string) error {
// ...
return nil
}
m.Add(mimetype, &CustomMinifier{KeepLineBreaks: true})
// or
m.AddRegexp(regexp.MustCompile("/x-custom$"), &CustomMinifier{KeepLineBreaks: true})
```
Add a minify function for a specific mimetype.
``` go
m.AddFunc(mimetype, func(m *minify.M, w io.Writer, r io.Reader, params map[string]string) error {
// ...
return nil
})
m.AddFuncRegexp(regexp.MustCompile("/x-custom$"), func(m *minify.M, w io.Writer, r io.Reader, params map[string]string) error {
// ...
return nil
})
```
Add a command `cmd` with arguments `args` for a specific mimetype.
``` go
m.AddCmd(mimetype, exec.Command(cmd, args...))
m.AddCmdRegexp(regexp.MustCompile("/x-custom$"), exec.Command(cmd, args...))
```
### Mediatypes
Using the `params map[string]string` argument one can pass parameters to the minifier such as seen in mediatypes (`type/subtype; key1=val2; key2=val2`). Examples are the encoding or charset of the data. Calling `Minify` will split the mimetype and parameters for the minifiers for you, but `MinifyMimetype` can be used if you already have them split up.
Minifiers can also be added using a regular expression. For example a minifier with `image/.*` will match any image mime.
## Examples
### Common minifiers
Basic example that minifies from stdin to stdout and loads the default HTML, CSS and JS minifiers. Optionally, one can enable `java -jar build/compiler.jar` to run for JS (for example the [ClosureCompiler](https://code.google.com/p/closure-compiler/)). Note that reading the file into a buffer first and writing to a pre-allocated buffer would be faster (but would disable streaming).
``` go
package main
import (
"log"
"os"
"os/exec"
"github.com/tdewolff/minify"
"github.com/tdewolff/minify/css"
"github.com/tdewolff/minify/html"
"github.com/tdewolff/minify/js"
"github.com/tdewolff/minify/json"
"github.com/tdewolff/minify/svg"
"github.com/tdewolff/minify/xml"
)
func main() {
m := minify.New()
m.AddFunc("text/css", css.Minify)
m.AddFunc("text/html", html.Minify)
m.AddFunc("text/javascript", js.Minify)
m.AddFunc("image/svg+xml", svg.Minify)
m.AddFuncRegexp(regexp.MustCompile("[/+]json$"), json.Minify)
m.AddFuncRegexp(regexp.MustCompile("[/+]xml$"), xml.Minify)
// Or use the following for better minification of JS but lower speed:
// m.AddCmd("text/javascript", exec.Command("java", "-jar", "build/compiler.jar"))
if err := m.Minify("text/html", os.Stdout, os.Stdin); err != nil {
panic(err)
}
}
```
### Custom minifier
Custom minifier showing an example that implements the minifier function interface. Within a custom minifier, it is possible to call any minifier function (through `m minify.Minifier`) recursively when dealing with embedded resources.
``` go
package main
import (
"bufio"
"fmt"
"io"
"log"
"strings"
"github.com/tdewolff/minify"
)
func main() {
m := minify.New()
m.AddFunc("text/plain", func(m *minify.M, w io.Writer, r io.Reader, _ map[string]string) error {
// remove newlines and spaces
rb := bufio.NewReader(r)
for {
line, err := rb.ReadString('\n')
if err != nil && err != io.EOF {
return err
}
if _, errws := io.WriteString(w, strings.Replace(line, " ", "", -1)); errws != nil {
return errws
}
if err == io.EOF {
break
}
}
return nil
})
in := "Because my coffee was too cold, I heated it in the microwave."
out, err := m.String("text/plain", in)
if err != nil {
panic(err)
}
fmt.Println(out)
// Output: Becausemycoffeewastoocold,Iheateditinthemicrowave.
}
```
### ResponseWriter
ResponseWriter example which returns a ResponseWriter that minifies the content and then writes to the original ResponseWriter. Any write after applying this filter will be minified.
``` go
type MinifyResponseWriter struct {
http.ResponseWriter
io.WriteCloser
}
func (m MinifyResponseWriter) Write(b []byte) (int, error) {
return m.WriteCloser.Write(b)
}
// MinifyResponseWriter must be closed explicitly by calling site.
func MinifyFilter(mediatype string, res http.ResponseWriter) MinifyResponseWriter {
m := minify.New()
// add minfiers
mw := m.Writer(mediatype, res)
return MinifyResponseWriter{res, mw}
}
```
``` go
// Usage
func(w http.ResponseWriter, req *http.Request) {
w = MinifyFilter("text/html", w)
io.WriteString(w, "<p class="message"> This HTTP response will be minified. </p>")
// Output: <p class=message>This HTTP response will be minified.
}
```
### Templates
Here's an example of a replacement for `template.ParseFiles` from `template/html`, which automatically minifies each template before parsing it.
Be aware that minifying templates will work in most cases but not all. Because the HTML minifier only works for valid HTML5, your template must be valid HTML5 of itself. Template tags are parsed as regular text by the minifier.
``` go
func compileTemplates(filenames ...string) (*template.Template, error) {
m := minify.New()
m.AddFunc("text/html", html.Minify)
var tmpl *template.Template
for _, filename := range filenames {
name := filepath.Base(filename)
if tmpl == nil {
tmpl = template.New(name)
} else {
tmpl = tmpl.New(name)
}
b, err := ioutil.ReadFile(filename)
if err != nil {
return nil, err
}
mb, err := m.Bytes("text/html", b)
if err != nil {
return nil, err
}
tmpl.Parse(string(mb))
}
return tmpl, nil
}
```
Example usage:
``` go
templates := template.MustCompile(compileTemplates("view.html", "home.html"))
```
## License
Released under the [MIT license](LICENSE.md).
[1]: http://golang.org/ "Go Language"

338
vendor/github.com/tdewolff/minify/common.go generated vendored Normal file
View file

@ -0,0 +1,338 @@
package minify
import (
"bytes"
"encoding/base64"
"net/url"
"github.com/tdewolff/parse"
"github.com/tdewolff/strconv"
)
// Epsilon is the closest number to zero that is not considered to be zero.
var Epsilon = 0.00001
// ContentType minifies a given mediatype by removing all whitespace.
func ContentType(b []byte) []byte {
j := 0
start := 0
inString := false
for i, c := range b {
if !inString && parse.IsWhitespace(c) {
if start != 0 {
j += copy(b[j:], b[start:i])
} else {
j += i
}
start = i + 1
} else if c == '"' {
inString = !inString
}
}
if start != 0 {
j += copy(b[j:], b[start:])
return parse.ToLower(b[:j])
}
return parse.ToLower(b)
}
// DataURI minifies a data URI and calls a minifier by the specified mediatype. Specifications: https://www.ietf.org/rfc/rfc2397.txt.
func DataURI(m *M, dataURI []byte) []byte {
if mediatype, data, err := parse.DataURI(dataURI); err == nil {
dataURI, _ = m.Bytes(string(mediatype), data)
base64Len := len(";base64") + base64.StdEncoding.EncodedLen(len(dataURI))
asciiLen := len(dataURI)
for _, c := range dataURI {
if 'A' <= c && c <= 'Z' || 'a' <= c && c <= 'z' || '0' <= c && c <= '9' || c == '-' || c == '_' || c == '.' || c == '~' || c == ' ' {
asciiLen++
} else {
asciiLen += 2
}
if asciiLen > base64Len {
break
}
}
if asciiLen > base64Len {
encoded := make([]byte, base64Len-len(";base64"))
base64.StdEncoding.Encode(encoded, dataURI)
dataURI = encoded
mediatype = append(mediatype, []byte(";base64")...)
} else {
dataURI = []byte(url.QueryEscape(string(dataURI)))
dataURI = bytes.Replace(dataURI, []byte("\""), []byte("\\\""), -1)
}
if len("text/plain") <= len(mediatype) && parse.EqualFold(mediatype[:len("text/plain")], []byte("text/plain")) {
mediatype = mediatype[len("text/plain"):]
}
for i := 0; i+len(";charset=us-ascii") <= len(mediatype); i++ {
// must start with semicolon and be followed by end of mediatype or semicolon
if mediatype[i] == ';' && parse.EqualFold(mediatype[i+1:i+len(";charset=us-ascii")], []byte("charset=us-ascii")) && (i+len(";charset=us-ascii") >= len(mediatype) || mediatype[i+len(";charset=us-ascii")] == ';') {
mediatype = append(mediatype[:i], mediatype[i+len(";charset=us-ascii"):]...)
break
}
}
dataURI = append(append(append([]byte("data:"), mediatype...), ','), dataURI...)
}
return dataURI
}
const MaxInt = int(^uint(0) >> 1)
const MinInt = -MaxInt - 1
// Number minifies a given byte slice containing a number (see parse.Number) and removes superfluous characters.
func Number(num []byte, prec int) []byte {
// omit first + and register mantissa start and end, whether it's negative and the exponent
neg := false
start := 0
dot := -1
end := len(num)
origExp := 0
if 0 < end && (num[0] == '+' || num[0] == '-') {
if num[0] == '-' {
neg = true
}
start++
}
for i, c := range num[start:] {
if c == '.' {
dot = start + i
} else if c == 'e' || c == 'E' {
end = start + i
i += start + 1
if i < len(num) && num[i] == '+' {
i++
}
if tmpOrigExp, n := strconv.ParseInt(num[i:]); n > 0 && tmpOrigExp >= int64(MinInt) && tmpOrigExp <= int64(MaxInt) {
// range checks for when int is 32 bit
origExp = int(tmpOrigExp)
} else {
return num
}
break
}
}
if dot == -1 {
dot = end
}
// trim leading zeros but leave at least one digit
for start < end-1 && num[start] == '0' {
start++
}
// trim trailing zeros
i := end - 1
for ; i > dot; i-- {
if num[i] != '0' {
end = i + 1
break
}
}
if i == dot {
end = dot
if start == end {
num[start] = '0'
return num[start : start+1]
}
} else if start == end-1 && num[start] == '0' {
return num[start:end]
}
// n is the number of significant digits
// normExp would be the exponent if it were normalised (0.1 <= f < 1)
n := 0
normExp := 0
if dot == start {
for i = dot + 1; i < end; i++ {
if num[i] != '0' {
n = end - i
normExp = dot - i + 1
break
}
}
} else if dot == end {
normExp = end - start
for i = end - 1; i >= start; i-- {
if num[i] != '0' {
n = i + 1 - start
end = i + 1
break
}
}
} else {
n = end - start - 1
normExp = dot - start
}
if origExp < 0 && (normExp < MinInt-origExp || normExp-n < MinInt-origExp) || origExp > 0 && (normExp > MaxInt-origExp || normExp-n > MaxInt-origExp) {
return num
}
normExp += origExp
// intExp would be the exponent if it were an integer
intExp := normExp - n
lenIntExp := 1
if intExp <= -10 || intExp >= 10 {
lenIntExp = strconv.LenInt(int64(intExp))
}
// there are three cases to consider when printing the number
// case 1: without decimals and with an exponent (large numbers)
// case 2: with decimals and without an exponent (around zero)
// case 3: without decimals and with a negative exponent (small numbers)
if normExp >= n {
// case 1
if dot < end {
if dot == start {
start = end - n
} else {
// TODO: copy the other part if shorter?
//fmt.Println("COPY1", end-dot-1)
copy(num[dot:], num[dot+1:end])
end--
}
}
if normExp >= n+3 {
num[end] = 'e'
end++
for i := end + lenIntExp - 1; i >= end; i-- {
num[i] = byte(intExp%10) + '0'
intExp /= 10
}
end += lenIntExp
} else if normExp == n+2 {
num[end] = '0'
num[end+1] = '0'
end += 2
} else if normExp == n+1 {
num[end] = '0'
end++
}
} else if normExp >= -lenIntExp-1 {
// case 2
zeroes := -normExp
newDot := 0
if zeroes > 0 {
// dot placed at the front and add zeroes
newDot = end - n - zeroes - 1
if newDot != dot {
d := start - newDot
if d > 0 {
if dot < end {
// copy original digits behind the dot backwards
//fmt.Println("COPY2", end-dot-1)
copy(num[dot+1+d:], num[dot+1:end])
if dot > start {
// copy original digits before the dot backwards
//fmt.Println("COPY3a", dot-start)
copy(num[start+d+1:], num[start:dot])
}
} else if dot > start {
// copy original digits before the dot backwards
//fmt.Println("COPY3b", dot-start)
copy(num[start+d:], num[start:dot])
}
newDot = start
end += d
} else {
start += -d
}
num[newDot] = '.'
for i := 0; i < zeroes; i++ {
num[newDot+1+i] = '0'
}
}
} else {
// placed in the middle
if dot == start {
// TODO: try if placing at the end reduces copying
// when there are zeroes after the dot
dot = end - n - 1
start = dot
} else if dot >= end {
// TODO: try if placing at the start reduces copying
// when input has no dot in it
dot = end
end++
}
newDot = start + normExp
if newDot > dot {
// copy digits forwards
//fmt.Println("COPY4", newDot-dot)
copy(num[dot:], num[dot+1:newDot+1])
} else if newDot < dot {
// copy digits backwards
//fmt.Println("COPY5", dot-newDot)
copy(num[newDot+1:], num[newDot:dot])
}
num[newDot] = '.'
}
// apply precision
dot = newDot
if prec > -1 && dot+1+prec < end {
end = dot + 1 + prec
inc := num[end] >= '5'
if inc || num[end-1] == '0' {
for i := end - 1; i > start; i-- {
if i == dot {
end--
} else if inc {
if num[i] == '9' {
end--
} else {
num[i]++
inc = false
break
}
} else if i > dot && num[i] == '0' {
end--
}
}
}
if dot == start && end == start+1 {
if inc {
num[start] = '1'
} else {
num[start] = '0'
}
} else if inc {
if num[start] == '9' {
num[start] = '0'
copy(num[start+1:], num[start:end])
end++
num[start] = '1'
} else {
num[start]++
}
}
}
} else {
// case 3
if dot < end {
if dot == start {
//fmt.Println("COPY6", n)
copy(num[start:], num[end-n:end])
end = start + n
} else {
//fmt.Println("COPY7", end-dot-1)
copy(num[dot:], num[dot+1:end])
end--
}
}
num[end] = 'e'
num[end+1] = '-'
end += 2
intExp = -intExp
for i := end + lenIntExp - 1; i >= end; i-- {
num[i] = byte(intExp%10) + '0'
intExp /= 10
}
end += lenIntExp
}
if neg {
start--
num[start] = '-'
}
return num[start:end]
}

517
vendor/github.com/tdewolff/minify/css/css.go generated vendored Normal file
View file

@ -0,0 +1,517 @@
// Package css minifies CSS3 following the specifications at http://www.w3.org/TR/css-syntax-3/.
package css
import (
"bytes"
"encoding/hex"
"io"
"strconv"
"github.com/tdewolff/minify"
"github.com/tdewolff/parse"
"github.com/tdewolff/parse/css"
)
var (
spaceBytes = []byte(" ")
colonBytes = []byte(":")
semicolonBytes = []byte(";")
leftBracketBytes = []byte("{")
rightBracketBytes = []byte("}")
zeroBytes = []byte("0")
msfilterBytes = []byte("-ms-filter")
backgroundNoneBytes = []byte("0 0")
)
type cssMinifier struct {
m *minify.M
w io.Writer
p *css.Parser
o *Minifier
}
////////////////////////////////////////////////////////////////
// Minifier is a CSS minifier.
type Minifier struct {
Decimals int
}
// Minify minifies CSS data, it reads from r and writes to w.
func Minify(m *minify.M, w io.Writer, r io.Reader, params map[string]string) error {
return (&Minifier{Decimals: -1}).Minify(m, w, r, params)
}
// Minify minifies CSS data, it reads from r and writes to w.
func (o *Minifier) Minify(m *minify.M, w io.Writer, r io.Reader, params map[string]string) error {
isInline := params != nil && params["inline"] == "1"
c := &cssMinifier{
m: m,
w: w,
p: css.NewParser(r, isInline),
o: o,
}
if err := c.minifyGrammar(); err != nil && err != io.EOF {
return err
}
return nil
}
func (c *cssMinifier) minifyGrammar() error {
semicolonQueued := false
for {
gt, _, data := c.p.Next()
if gt == css.ErrorGrammar {
return c.p.Err()
} else if gt == css.EndAtRuleGrammar || gt == css.EndRulesetGrammar {
if _, err := c.w.Write(rightBracketBytes); err != nil {
return err
}
semicolonQueued = false
continue
}
if semicolonQueued {
if _, err := c.w.Write(semicolonBytes); err != nil {
return err
}
semicolonQueued = false
}
if gt == css.AtRuleGrammar {
if _, err := c.w.Write(data); err != nil {
return err
}
for _, val := range c.p.Values() {
if _, err := c.w.Write(val.Data); err != nil {
return err
}
}
semicolonQueued = true
} else if gt == css.BeginAtRuleGrammar {
if _, err := c.w.Write(data); err != nil {
return err
}
for _, val := range c.p.Values() {
if _, err := c.w.Write(val.Data); err != nil {
return err
}
}
if _, err := c.w.Write(leftBracketBytes); err != nil {
return err
}
} else if gt == css.BeginRulesetGrammar {
if err := c.minifySelectors(data, c.p.Values()); err != nil {
return err
}
if _, err := c.w.Write(leftBracketBytes); err != nil {
return err
}
} else if gt == css.DeclarationGrammar {
if _, err := c.w.Write(data); err != nil {
return err
}
if _, err := c.w.Write(colonBytes); err != nil {
return err
}
if err := c.minifyDeclaration(data, c.p.Values()); err != nil {
return err
}
semicolonQueued = true
} else if gt == css.CommentGrammar {
if len(data) > 5 && data[1] == '*' && data[2] == '!' {
if _, err := c.w.Write(data[:3]); err != nil {
return err
}
comment := parse.TrimWhitespace(parse.ReplaceMultipleWhitespace(data[3 : len(data)-2]))
if _, err := c.w.Write(comment); err != nil {
return err
}
if _, err := c.w.Write(data[len(data)-2:]); err != nil {
return err
}
}
} else if _, err := c.w.Write(data); err != nil {
return err
}
}
}
func (c *cssMinifier) minifySelectors(property []byte, values []css.Token) error {
inAttr := false
isClass := false
for _, val := range c.p.Values() {
if !inAttr {
if val.TokenType == css.IdentToken {
if !isClass {
parse.ToLower(val.Data)
}
isClass = false
} else if val.TokenType == css.DelimToken && val.Data[0] == '.' {
isClass = true
} else if val.TokenType == css.LeftBracketToken {
inAttr = true
}
} else {
if val.TokenType == css.StringToken && len(val.Data) > 2 {
s := val.Data[1 : len(val.Data)-1]
if css.IsIdent([]byte(s)) {
if _, err := c.w.Write(s); err != nil {
return err
}
continue
}
} else if val.TokenType == css.RightBracketToken {
inAttr = false
}
}
if _, err := c.w.Write(val.Data); err != nil {
return err
}
}
return nil
}
func (c *cssMinifier) minifyDeclaration(property []byte, values []css.Token) error {
if len(values) == 0 {
return nil
}
prop := css.ToHash(property)
inProgid := false
for i, value := range values {
if inProgid {
if value.TokenType == css.FunctionToken {
inProgid = false
}
continue
} else if value.TokenType == css.IdentToken && css.ToHash(value.Data) == css.Progid {
inProgid = true
continue
}
value.TokenType, value.Data = c.shortenToken(prop, value.TokenType, value.Data)
if prop == css.Font || prop == css.Font_Family || prop == css.Font_Weight {
if value.TokenType == css.IdentToken && (prop == css.Font || prop == css.Font_Weight) {
val := css.ToHash(value.Data)
if val == css.Normal && prop == css.Font_Weight {
// normal could also be specified for font-variant, not just font-weight
value.TokenType = css.NumberToken
value.Data = []byte("400")
} else if val == css.Bold {
value.TokenType = css.NumberToken
value.Data = []byte("700")
}
} else if value.TokenType == css.StringToken && (prop == css.Font || prop == css.Font_Family) && len(value.Data) > 2 {
unquote := true
parse.ToLower(value.Data)
s := value.Data[1 : len(value.Data)-1]
if len(s) > 0 {
for _, split := range bytes.Split(s, spaceBytes) {
val := css.ToHash(split)
// if len is zero, it contains two consecutive spaces
if val == css.Inherit || val == css.Serif || val == css.Sans_Serif || val == css.Monospace || val == css.Fantasy || val == css.Cursive || val == css.Initial || val == css.Default ||
len(split) == 0 || !css.IsIdent(split) {
unquote = false
break
}
}
}
if unquote {
value.Data = s
}
}
} else if prop == css.Outline || prop == css.Border || prop == css.Border_Bottom || prop == css.Border_Left || prop == css.Border_Right || prop == css.Border_Top {
if css.ToHash(value.Data) == css.None {
value.TokenType = css.NumberToken
value.Data = zeroBytes
}
}
values[i].TokenType, values[i].Data = value.TokenType, value.Data
}
important := false
if len(values) > 2 && values[len(values)-2].TokenType == css.DelimToken && values[len(values)-2].Data[0] == '!' && css.ToHash(values[len(values)-1].Data) == css.Important {
values = values[:len(values)-2]
important = true
}
if len(values) == 1 {
if prop == css.Background && css.ToHash(values[0].Data) == css.None {
values[0].Data = backgroundNoneBytes
} else if bytes.Equal(property, msfilterBytes) {
alpha := []byte("progid:DXImageTransform.Microsoft.Alpha(Opacity=")
if values[0].TokenType == css.StringToken && bytes.HasPrefix(values[0].Data[1:len(values[0].Data)-1], alpha) {
values[0].Data = append(append([]byte{values[0].Data[0]}, []byte("alpha(opacity=")...), values[0].Data[1+len(alpha):]...)
}
}
} else {
if prop == css.Margin || prop == css.Padding || prop == css.Border_Width {
if (values[0].TokenType == css.NumberToken || values[0].TokenType == css.DimensionToken || values[0].TokenType == css.PercentageToken) && (len(values)+1)%2 == 0 {
valid := true
for i := 1; i < len(values); i += 2 {
if values[i].TokenType != css.WhitespaceToken || values[i+1].TokenType != css.NumberToken && values[i+1].TokenType != css.DimensionToken && values[i+1].TokenType != css.PercentageToken {
valid = false
break
}
}
if valid {
n := (len(values) + 1) / 2
if n == 2 {
if bytes.Equal(values[0].Data, values[2].Data) {
values = values[:1]
}
} else if n == 3 {
if bytes.Equal(values[0].Data, values[2].Data) && bytes.Equal(values[0].Data, values[4].Data) {
values = values[:1]
} else if bytes.Equal(values[0].Data, values[4].Data) {
values = values[:3]
}
} else if n == 4 {
if bytes.Equal(values[0].Data, values[2].Data) && bytes.Equal(values[0].Data, values[4].Data) && bytes.Equal(values[0].Data, values[6].Data) {
values = values[:1]
} else if bytes.Equal(values[0].Data, values[4].Data) && bytes.Equal(values[2].Data, values[6].Data) {
values = values[:3]
} else if bytes.Equal(values[2].Data, values[6].Data) {
values = values[:5]
}
}
}
}
} else if prop == css.Filter && len(values) == 11 {
if bytes.Equal(values[0].Data, []byte("progid")) &&
values[1].TokenType == css.ColonToken &&
bytes.Equal(values[2].Data, []byte("DXImageTransform")) &&
values[3].Data[0] == '.' &&
bytes.Equal(values[4].Data, []byte("Microsoft")) &&
values[5].Data[0] == '.' &&
bytes.Equal(values[6].Data, []byte("Alpha(")) &&
bytes.Equal(parse.ToLower(values[7].Data), []byte("opacity")) &&
values[8].Data[0] == '=' &&
values[10].Data[0] == ')' {
values = values[6:]
values[0].Data = []byte("alpha(")
}
}
}
for i := 0; i < len(values); i++ {
if values[i].TokenType == css.FunctionToken {
n, err := c.minifyFunction(values[i:])
if err != nil {
return err
}
i += n - 1
} else if _, err := c.w.Write(values[i].Data); err != nil {
return err
}
}
if important {
if _, err := c.w.Write([]byte("!important")); err != nil {
return err
}
}
return nil
}
func (c *cssMinifier) minifyFunction(values []css.Token) (int, error) {
n := 1
simple := true
for i, value := range values[1:] {
if value.TokenType == css.RightParenthesisToken {
n++
break
}
if i%2 == 0 && (value.TokenType != css.NumberToken && value.TokenType != css.PercentageToken) || (i%2 == 1 && value.TokenType != css.CommaToken) {
simple = false
}
n++
}
values = values[:n]
if simple && (n-1)%2 == 0 {
fun := css.ToHash(values[0].Data[:len(values[0].Data)-1])
nArgs := (n - 1) / 2
if (fun == css.Rgba || fun == css.Hsla) && nArgs == 4 {
d, _ := strconv.ParseFloat(string(values[7].Data), 32) // can never fail because if simple == true than this is a NumberToken or PercentageToken
if d-1.0 > -minify.Epsilon {
if fun == css.Rgba {
values[0].Data = []byte("rgb(")
fun = css.Rgb
} else {
values[0].Data = []byte("hsl(")
fun = css.Hsl
}
values = values[:len(values)-2]
values[len(values)-1].Data = []byte(")")
nArgs = 3
} else if d < minify.Epsilon {
values[0].Data = []byte("transparent")
values = values[:1]
fun = 0
nArgs = 0
}
}
if fun == css.Rgb && nArgs == 3 {
var err [3]error
rgb := [3]byte{}
for j := 0; j < 3; j++ {
val := values[j*2+1]
if val.TokenType == css.NumberToken {
var d int64
d, err[j] = strconv.ParseInt(string(val.Data), 10, 32)
if d < 0 {
d = 0
} else if d > 255 {
d = 255
}
rgb[j] = byte(d)
} else if val.TokenType == css.PercentageToken {
var d float64
d, err[j] = strconv.ParseFloat(string(val.Data[:len(val.Data)-1]), 32)
if d < 0.0 {
d = 0.0
} else if d > 100.0 {
d = 100.0
}
rgb[j] = byte((d / 100.0 * 255.0) + 0.5)
}
}
if err[0] == nil && err[1] == nil && err[2] == nil {
val := make([]byte, 7)
val[0] = '#'
hex.Encode(val[1:], rgb[:])
parse.ToLower(val)
if s, ok := ShortenColorHex[string(val)]; ok {
if _, err := c.w.Write(s); err != nil {
return 0, err
}
} else {
if len(val) == 7 && val[1] == val[2] && val[3] == val[4] && val[5] == val[6] {
val[2] = val[3]
val[3] = val[5]
val = val[:4]
}
if _, err := c.w.Write(val); err != nil {
return 0, err
}
}
return n, nil
}
} else if fun == css.Hsl && nArgs == 3 {
if values[1].TokenType == css.NumberToken && values[3].TokenType == css.PercentageToken && values[5].TokenType == css.PercentageToken {
h, err1 := strconv.ParseFloat(string(values[1].Data), 32)
s, err2 := strconv.ParseFloat(string(values[3].Data[:len(values[3].Data)-1]), 32)
l, err3 := strconv.ParseFloat(string(values[5].Data[:len(values[5].Data)-1]), 32)
if err1 == nil && err2 == nil && err3 == nil {
r, g, b := css.HSL2RGB(h/360.0, s/100.0, l/100.0)
rgb := []byte{byte((r * 255.0) + 0.5), byte((g * 255.0) + 0.5), byte((b * 255.0) + 0.5)}
val := make([]byte, 7)
val[0] = '#'
hex.Encode(val[1:], rgb[:])
parse.ToLower(val)
if s, ok := ShortenColorHex[string(val)]; ok {
if _, err := c.w.Write(s); err != nil {
return 0, err
}
} else {
if len(val) == 7 && val[1] == val[2] && val[3] == val[4] && val[5] == val[6] {
val[2] = val[3]
val[3] = val[5]
val = val[:4]
}
if _, err := c.w.Write(val); err != nil {
return 0, err
}
}
return n, nil
}
}
}
}
for _, value := range values {
if _, err := c.w.Write(value.Data); err != nil {
return 0, err
}
}
return n, nil
}
func (c *cssMinifier) shortenToken(prop css.Hash, tt css.TokenType, data []byte) (css.TokenType, []byte) {
if tt == css.NumberToken || tt == css.PercentageToken || tt == css.DimensionToken {
if tt == css.NumberToken && (prop == css.Z_Index || prop == css.Counter_Increment || prop == css.Counter_Reset || prop == css.Orphans || prop == css.Widows) {
return tt, data // integers
}
n := len(data)
if tt == css.PercentageToken {
n--
} else if tt == css.DimensionToken {
n = parse.Number(data)
}
dim := data[n:]
data = minify.Number(data[:n], c.o.Decimals)
if len(data) != 1 || data[0] != '0' {
if tt == css.PercentageToken {
data = append(data, '%')
} else if tt == css.DimensionToken {
parse.ToLower(dim)
data = append(data, dim...)
}
}
} else if tt == css.IdentToken {
parse.ToLower(data)
if hex, ok := ShortenColorName[css.ToHash(data)]; ok {
tt = css.HashToken
data = hex
}
} else if tt == css.HashToken {
parse.ToLower(data)
if ident, ok := ShortenColorHex[string(data)]; ok {
tt = css.IdentToken
data = ident
} else if len(data) == 7 && data[1] == data[2] && data[3] == data[4] && data[5] == data[6] {
tt = css.HashToken
data[2] = data[3]
data[3] = data[5]
data = data[:4]
}
} else if tt == css.StringToken {
// remove any \\\r\n \\\r \\\n
for i := 1; i < len(data)-2; i++ {
if data[i] == '\\' && (data[i+1] == '\n' || data[i+1] == '\r') {
// encountered first replacee, now start to move bytes to the front
j := i + 2
if data[i+1] == '\r' && len(data) > i+2 && data[i+2] == '\n' {
j++
}
for ; j < len(data); j++ {
if data[j] == '\\' && len(data) > j+1 && (data[j+1] == '\n' || data[j+1] == '\r') {
if data[j+1] == '\r' && len(data) > j+2 && data[j+2] == '\n' {
j++
}
j++
} else {
data[i] = data[j]
i++
}
}
data = data[:i]
break
}
}
} else if tt == css.URLToken {
parse.ToLower(data[:3])
if len(data) > 10 {
uri := data[4 : len(data)-1]
delim := byte('"')
if uri[0] == '\'' || uri[0] == '"' {
delim = uri[0]
uri = uri[1 : len(uri)-1]
}
uri = minify.DataURI(c.m, uri)
if css.IsURLUnquoted(uri) {
data = append(append([]byte("url("), uri...), ')')
} else {
data = append(append(append([]byte("url("), delim), uri...), delim, ')')
}
}
}
return tt, data
}

143
vendor/github.com/tdewolff/minify/css/table.go generated vendored Normal file
View file

@ -0,0 +1,143 @@
package css
import "github.com/tdewolff/parse/css"
// Uses http://www.w3.org/TR/2010/PR-css3-color-20101028/ for colors
// ShortenColorHex maps a color hexcode to its shorter name
var ShortenColorHex = map[string][]byte{
"#000080": []byte("navy"),
"#008000": []byte("green"),
"#008080": []byte("teal"),
"#4b0082": []byte("indigo"),
"#800000": []byte("maroon"),
"#800080": []byte("purple"),
"#808000": []byte("olive"),
"#808080": []byte("gray"),
"#a0522d": []byte("sienna"),
"#a52a2a": []byte("brown"),
"#c0c0c0": []byte("silver"),
"#cd853f": []byte("peru"),
"#d2b48c": []byte("tan"),
"#da70d6": []byte("orchid"),
"#dda0dd": []byte("plum"),
"#ee82ee": []byte("violet"),
"#f0e68c": []byte("khaki"),
"#f0ffff": []byte("azure"),
"#f5deb3": []byte("wheat"),
"#f5f5dc": []byte("beige"),
"#fa8072": []byte("salmon"),
"#faf0e6": []byte("linen"),
"#ff6347": []byte("tomato"),
"#ff7f50": []byte("coral"),
"#ffa500": []byte("orange"),
"#ffc0cb": []byte("pink"),
"#ffd700": []byte("gold"),
"#ffe4c4": []byte("bisque"),
"#fffafa": []byte("snow"),
"#fffff0": []byte("ivory"),
"#ff0000": []byte("red"),
"#f00": []byte("red"),
}
// ShortenColorName maps a color name to its shorter hexcode
var ShortenColorName = map[css.Hash][]byte{
css.Black: []byte("#000"),
css.Darkblue: []byte("#00008b"),
css.Mediumblue: []byte("#0000cd"),
css.Darkgreen: []byte("#006400"),
css.Darkcyan: []byte("#008b8b"),
css.Deepskyblue: []byte("#00bfff"),
css.Darkturquoise: []byte("#00ced1"),
css.Mediumspringgreen: []byte("#00fa9a"),
css.Springgreen: []byte("#00ff7f"),
css.Midnightblue: []byte("#191970"),
css.Dodgerblue: []byte("#1e90ff"),
css.Lightseagreen: []byte("#20b2aa"),
css.Forestgreen: []byte("#228b22"),
css.Seagreen: []byte("#2e8b57"),
css.Darkslategray: []byte("#2f4f4f"),
css.Limegreen: []byte("#32cd32"),
css.Mediumseagreen: []byte("#3cb371"),
css.Turquoise: []byte("#40e0d0"),
css.Royalblue: []byte("#4169e1"),
css.Steelblue: []byte("#4682b4"),
css.Darkslateblue: []byte("#483d8b"),
css.Mediumturquoise: []byte("#48d1cc"),
css.Darkolivegreen: []byte("#556b2f"),
css.Cadetblue: []byte("#5f9ea0"),
css.Cornflowerblue: []byte("#6495ed"),
css.Mediumaquamarine: []byte("#66cdaa"),
css.Slateblue: []byte("#6a5acd"),
css.Olivedrab: []byte("#6b8e23"),
css.Slategray: []byte("#708090"),
css.Lightslateblue: []byte("#789"),
css.Mediumslateblue: []byte("#7b68ee"),
css.Lawngreen: []byte("#7cfc00"),
css.Chartreuse: []byte("#7fff00"),
css.Aquamarine: []byte("#7fffd4"),
css.Lightskyblue: []byte("#87cefa"),
css.Blueviolet: []byte("#8a2be2"),
css.Darkmagenta: []byte("#8b008b"),
css.Saddlebrown: []byte("#8b4513"),
css.Darkseagreen: []byte("#8fbc8f"),
css.Lightgreen: []byte("#90ee90"),
css.Mediumpurple: []byte("#9370db"),
css.Darkviolet: []byte("#9400d3"),
css.Palegreen: []byte("#98fb98"),
css.Darkorchid: []byte("#9932cc"),
css.Yellowgreen: []byte("#9acd32"),
css.Darkgray: []byte("#a9a9a9"),
css.Lightblue: []byte("#add8e6"),
css.Greenyellow: []byte("#adff2f"),
css.Paleturquoise: []byte("#afeeee"),
css.Lightsteelblue: []byte("#b0c4de"),
css.Powderblue: []byte("#b0e0e6"),
css.Firebrick: []byte("#b22222"),
css.Darkgoldenrod: []byte("#b8860b"),
css.Mediumorchid: []byte("#ba55d3"),
css.Rosybrown: []byte("#bc8f8f"),
css.Darkkhaki: []byte("#bdb76b"),
css.Mediumvioletred: []byte("#c71585"),
css.Indianred: []byte("#cd5c5c"),
css.Chocolate: []byte("#d2691e"),
css.Lightgray: []byte("#d3d3d3"),
css.Goldenrod: []byte("#daa520"),
css.Palevioletred: []byte("#db7093"),
css.Gainsboro: []byte("#dcdcdc"),
css.Burlywood: []byte("#deb887"),
css.Lightcyan: []byte("#e0ffff"),
css.Lavender: []byte("#e6e6fa"),
css.Darksalmon: []byte("#e9967a"),
css.Palegoldenrod: []byte("#eee8aa"),
css.Lightcoral: []byte("#f08080"),
css.Aliceblue: []byte("#f0f8ff"),
css.Honeydew: []byte("#f0fff0"),
css.Sandybrown: []byte("#f4a460"),
css.Whitesmoke: []byte("#f5f5f5"),
css.Mintcream: []byte("#f5fffa"),
css.Ghostwhite: []byte("#f8f8ff"),
css.Antiquewhite: []byte("#faebd7"),
css.Lightgoldenrodyellow: []byte("#fafad2"),
css.Fuchsia: []byte("#f0f"),
css.Magenta: []byte("#f0f"),
css.Deeppink: []byte("#ff1493"),
css.Orangered: []byte("#ff4500"),
css.Darkorange: []byte("#ff8c00"),
css.Lightsalmon: []byte("#ffa07a"),
css.Lightpink: []byte("#ffb6c1"),
css.Peachpuff: []byte("#ffdab9"),
css.Navajowhite: []byte("#ffdead"),
css.Moccasin: []byte("#ffe4b5"),
css.Mistyrose: []byte("#ffe4e1"),
css.Blanchedalmond: []byte("#ffebcd"),
css.Papayawhip: []byte("#ffefd5"),
css.Lavenderblush: []byte("#fff0f5"),
css.Seashell: []byte("#fff5ee"),
css.Cornsilk: []byte("#fff8dc"),
css.Lemonchiffon: []byte("#fffacd"),
css.Floralwhite: []byte("#fffaf0"),
css.Yellow: []byte("#ff0"),
css.Lightyellow: []byte("#ffffe0"),
css.White: []byte("#fff"),
}

198
vendor/github.com/tdewolff/minify/minify.go generated vendored Normal file
View file

@ -0,0 +1,198 @@
// Package minify relates MIME type to minifiers. Several minifiers are provided in the subpackages.
package minify
import (
"errors"
"io"
"net/url"
"os/exec"
"regexp"
"sync"
"github.com/tdewolff/buffer"
"github.com/tdewolff/parse"
)
// ErrNotExist is returned when no minifier exists for a given mimetype.
var ErrNotExist = errors.New("minifier does not exist for mimetype")
////////////////////////////////////////////////////////////////
type minifierFunc func(*M, io.Writer, io.Reader, map[string]string) error
func (f minifierFunc) Minify(m *M, w io.Writer, r io.Reader, params map[string]string) error {
return f(m, w, r, params)
}
// Minifier is the interface for minifiers.
// The *M parameter is used for minifying embedded resources, such as JS within HTML.
type Minifier interface {
Minify(*M, io.Writer, io.Reader, map[string]string) error
}
////////////////////////////////////////////////////////////////
type patternMinifier struct {
pattern *regexp.Regexp
Minifier
}
type cmdMinifier struct {
cmd *exec.Cmd
}
func (c *cmdMinifier) Minify(_ *M, w io.Writer, r io.Reader, _ map[string]string) error {
cmd := &exec.Cmd{}
*cmd = *c.cmd // concurrency safety
cmd.Stdout = w
cmd.Stdin = r
return cmd.Run()
}
////////////////////////////////////////////////////////////////
// M holds a map of mimetype => function to allow recursive minifier calls of the minifier functions.
type M struct {
literal map[string]Minifier
pattern []patternMinifier
URL *url.URL
}
// New returns a new M.
func New() *M {
return &M{
map[string]Minifier{},
[]patternMinifier{},
nil,
}
}
// Add adds a minifier to the mimetype => function map (unsafe for concurrent use).
func (m *M) Add(mimetype string, minifier Minifier) {
m.literal[mimetype] = minifier
}
// AddFunc adds a minify function to the mimetype => function map (unsafe for concurrent use).
func (m *M) AddFunc(mimetype string, minifier minifierFunc) {
m.literal[mimetype] = minifier
}
// AddRegexp adds a minifier to the mimetype => function map (unsafe for concurrent use).
func (m *M) AddRegexp(pattern *regexp.Regexp, minifier Minifier) {
m.pattern = append(m.pattern, patternMinifier{pattern, minifier})
}
// AddFuncRegexp adds a minify function to the mimetype => function map (unsafe for concurrent use).
func (m *M) AddFuncRegexp(pattern *regexp.Regexp, minifier minifierFunc) {
m.pattern = append(m.pattern, patternMinifier{pattern, minifier})
}
// AddCmd adds a minify function to the mimetype => function map (unsafe for concurrent use) that executes a command to process the minification.
// It allows the use of external tools like ClosureCompiler, UglifyCSS, etc. for a specific mimetype.
func (m *M) AddCmd(mimetype string, cmd *exec.Cmd) {
m.literal[mimetype] = &cmdMinifier{cmd}
}
// AddCmdRegexp adds a minify function to the mimetype => function map (unsafe for concurrent use) that executes a command to process the minification.
// It allows the use of external tools like ClosureCompiler, UglifyCSS, etc. for a specific mimetype regular expression.
func (m *M) AddCmdRegexp(pattern *regexp.Regexp, cmd *exec.Cmd) {
m.pattern = append(m.pattern, patternMinifier{pattern, &cmdMinifier{cmd}})
}
// Minify minifies the content of a Reader and writes it to a Writer (safe for concurrent use).
// An error is returned when no such mimetype exists (ErrNotExist) or when an error occurred in the minifier function.
// Mediatype may take the form of 'text/plain', 'text/*', '*/*' or 'text/plain; charset=UTF-8; version=2.0'.
func (m *M) Minify(mediatype string, w io.Writer, r io.Reader) error {
mimetype, params := parse.Mediatype([]byte(mediatype))
return m.MinifyMimetype(mimetype, w, r, params)
}
// MinifyMimetype minifies the content of a Reader and writes it to a Writer (safe for concurrent use).
// It is a lower level version of Minify and requires the mediatype to be split up into mimetype and parameters.
// It is mostly used internally by minifiers because it is faster (no need to convert a byte-slice to string and vice versa).
func (m *M) MinifyMimetype(mimetype []byte, w io.Writer, r io.Reader, params map[string]string) error {
err := ErrNotExist
if minifier, ok := m.literal[string(mimetype)]; ok { // string conversion is optimized away
err = minifier.Minify(m, w, r, params)
} else {
for _, minifier := range m.pattern {
if minifier.pattern.Match(mimetype) {
err = minifier.Minify(m, w, r, params)
break
}
}
}
return err
}
// Bytes minifies an array of bytes (safe for concurrent use). When an error occurs it return the original array and the error.
// It returns an error when no such mimetype exists (ErrNotExist) or any error occurred in the minifier function.
func (m *M) Bytes(mediatype string, v []byte) ([]byte, error) {
out := buffer.NewWriter(make([]byte, 0, len(v)))
if err := m.Minify(mediatype, out, buffer.NewReader(v)); err != nil {
return v, err
}
return out.Bytes(), nil
}
// String minifies a string (safe for concurrent use). When an error occurs it return the original string and the error.
// It returns an error when no such mimetype exists (ErrNotExist) or any error occurred in the minifier function.
func (m *M) String(mediatype string, v string) (string, error) {
out := buffer.NewWriter(make([]byte, 0, len(v)))
if err := m.Minify(mediatype, out, buffer.NewReader([]byte(v))); err != nil {
return v, err
}
return string(out.Bytes()), nil
}
// Reader wraps a Reader interface and minifies the stream.
// Errors from the minifier are returned by the reader.
func (m *M) Reader(mediatype string, r io.Reader) io.Reader {
pr, pw := io.Pipe()
go func() {
if err := m.Minify(mediatype, pw, r); err != nil {
pw.CloseWithError(err)
} else {
pw.Close()
}
}()
return pr
}
// minifyWriter makes sure that errors from the minifier are passed down through Close.
// It also makes sure that all data has been written on calling Close, it flushes.
type minifyWriter struct {
pw *io.PipeWriter
wg sync.WaitGroup
err error
}
func (mw *minifyWriter) Write(b []byte) (int, error) {
return mw.pw.Write(b)
}
func (mw *minifyWriter) Close() error {
mw.pw.Close()
mw.wg.Wait()
return mw.err
}
// Writer wraps a Writer interface and minifies the stream.
// Errors from the minifier are returned by the writer.
// The writer must be closed explicitly.
func (m *M) Writer(mediatype string, w io.Writer) io.WriteCloser {
pr, pw := io.Pipe()
mw := &minifyWriter{pw, sync.WaitGroup{}, nil}
mw.wg.Add(1)
go func() {
if err := m.Minify(mediatype, w, pr); err != nil {
mw.err = err
pr.CloseWithError(err)
} else {
pr.Close()
}
mw.wg.Done()
}()
return mw
}

134
vendor/github.com/tdewolff/minify/svg/buffer.go generated vendored Normal file
View file

@ -0,0 +1,134 @@
package svg
import (
"github.com/tdewolff/parse"
"github.com/tdewolff/parse/svg"
"github.com/tdewolff/parse/xml"
)
// Token is a single token unit with an attribute value (if given) and hash of the data.
type Token struct {
xml.TokenType
Hash svg.Hash
Data []byte
Text []byte
AttrVal []byte
}
// TokenBuffer is a buffer that allows for token look-ahead.
type TokenBuffer struct {
l *xml.Lexer
buf []Token
pos int
attrBuffer []*Token
prevN int
}
// NewTokenBuffer returns a new TokenBuffer.
func NewTokenBuffer(l *xml.Lexer) *TokenBuffer {
return &TokenBuffer{
l: l,
buf: make([]Token, 0, 8),
}
}
func (z *TokenBuffer) read(t *Token) {
t.TokenType, t.Data = z.l.Next()
t.Text = z.l.Text()
if t.TokenType == xml.AttributeToken {
t.AttrVal = z.l.AttrVal()
if len(t.AttrVal) > 1 && (t.AttrVal[0] == '"' || t.AttrVal[0] == '\'') {
t.AttrVal = parse.ReplaceMultipleWhitespace(parse.TrimWhitespace(t.AttrVal[1 : len(t.AttrVal)-1])) // quotes will be readded in attribute loop if necessary
}
t.Hash = svg.ToHash(t.Text)
} else if t.TokenType == xml.StartTagToken || t.TokenType == xml.EndTagToken {
t.AttrVal = nil
t.Hash = svg.ToHash(t.Text)
} else {
t.AttrVal = nil
t.Hash = 0
}
}
// Peek returns the ith element and possibly does an allocation.
// Peeking past an error will panic.
func (z *TokenBuffer) Peek(pos int) *Token {
pos += z.pos
if pos >= len(z.buf) {
if len(z.buf) > 0 && z.buf[len(z.buf)-1].TokenType == xml.ErrorToken {
return &z.buf[len(z.buf)-1]
}
c := cap(z.buf)
d := len(z.buf) - z.pos
p := pos - z.pos + 1 // required peek length
var buf []Token
if 2*p > c {
buf = make([]Token, 0, 2*c+p)
} else {
buf = z.buf
}
copy(buf[:d], z.buf[z.pos:])
buf = buf[:p]
pos -= z.pos
for i := d; i < p; i++ {
z.read(&buf[i])
if buf[i].TokenType == xml.ErrorToken {
buf = buf[:i+1]
pos = i
break
}
}
z.pos, z.buf = 0, buf
}
return &z.buf[pos]
}
// Shift returns the first element and advances position.
func (z *TokenBuffer) Shift() *Token {
z.l.Free(z.prevN)
if z.pos >= len(z.buf) {
t := &z.buf[:1][0]
z.read(t)
z.prevN = len(t.Data)
return t
}
t := &z.buf[z.pos]
z.pos++
z.prevN = len(t.Data)
return t
}
// Attributes extracts the gives attribute hashes from a tag.
// It returns in the same order pointers to the requested token data or nil.
func (z *TokenBuffer) Attributes(hashes ...svg.Hash) ([]*Token, *Token) {
n := 0
for {
if t := z.Peek(n); t.TokenType != xml.AttributeToken {
break
}
n++
}
if len(hashes) > cap(z.attrBuffer) {
z.attrBuffer = make([]*Token, len(hashes))
} else {
z.attrBuffer = z.attrBuffer[:len(hashes)]
for i := range z.attrBuffer {
z.attrBuffer[i] = nil
}
}
var replacee *Token
for i := z.pos; i < z.pos+n; i++ {
attr := &z.buf[i]
for j, hash := range hashes {
if hash == attr.Hash {
z.attrBuffer[j] = attr
replacee = attr
}
}
}
return z.attrBuffer, replacee
}

269
vendor/github.com/tdewolff/minify/svg/pathdata.go generated vendored Normal file
View file

@ -0,0 +1,269 @@
package svg
import (
strconvStdlib "strconv"
"github.com/tdewolff/minify"
"github.com/tdewolff/parse"
"github.com/tdewolff/strconv"
)
type PathData struct {
o *Minifier
x, y float64
coords [][]byte
coordFloats []float64
state PathDataState
curBuffer []byte
altBuffer []byte
coordBuffer []byte
}
type PathDataState struct {
cmd byte
prevDigit bool
prevDigitIsInt bool
}
func NewPathData(o *Minifier) *PathData {
return &PathData{o: o}
}
func (p *PathData) ShortenPathData(b []byte) []byte {
var x0, y0 float64
var cmd byte
p.x, p.y = 0.0, 0.0
p.coords = p.coords[:0]
p.coordFloats = p.coordFloats[:0]
p.state = PathDataState{}
j := 0
for i := 0; i < len(b); i++ {
c := b[i]
if c == ' ' || c == ',' || c == '\n' || c == '\r' || c == '\t' {
continue
} else if c >= 'A' && (cmd == 0 || cmd != c || c == 'M' || c == 'm') { // any command
if cmd != 0 {
j += p.copyInstruction(b[j:], cmd)
if cmd == 'M' || cmd == 'm' {
x0 = p.x
y0 = p.y
} else if cmd == 'Z' || cmd == 'z' {
p.x = x0
p.y = y0
}
}
cmd = c
p.coords = p.coords[:0]
p.coordFloats = p.coordFloats[:0]
} else if n := parse.Number(b[i:]); n > 0 {
f, _ := strconv.ParseFloat(b[i : i+n])
p.coords = append(p.coords, b[i:i+n])
p.coordFloats = append(p.coordFloats, f)
i += n - 1
}
}
if cmd != 0 {
j += p.copyInstruction(b[j:], cmd)
}
return b[:j]
}
func (p *PathData) copyInstruction(b []byte, cmd byte) int {
n := len(p.coords)
if n == 0 {
if cmd == 'Z' || cmd == 'z' {
b[0] = 'z'
return 1
}
return 0
}
isRelCmd := cmd >= 'a'
// get new cursor coordinates
di := 0
if (cmd == 'M' || cmd == 'm' || cmd == 'L' || cmd == 'l' || cmd == 'T' || cmd == 't') && n%2 == 0 {
di = 2
// reprint M always, as the first pair is a move but subsequent pairs are L
if cmd == 'M' || cmd == 'm' {
p.state.cmd = byte(0)
}
} else if cmd == 'H' || cmd == 'h' || cmd == 'V' || cmd == 'v' {
di = 1
} else if (cmd == 'S' || cmd == 's' || cmd == 'Q' || cmd == 'q') && n%4 == 0 {
di = 4
} else if (cmd == 'C' || cmd == 'c') && n%6 == 0 {
di = 6
} else if (cmd == 'A' || cmd == 'a') && n%7 == 0 {
di = 7
} else {
return 0
}
j := 0
origCmd := cmd
ax, ay := 0.0, 0.0
for i := 0; i < n; i += di {
// subsequent coordinate pairs for M are really L
if i > 0 && (origCmd == 'M' || origCmd == 'm') {
origCmd = 'L' + (origCmd - 'M')
}
cmd = origCmd
coords := p.coords[i : i+di]
coordFloats := p.coordFloats[i : i+di]
if cmd == 'H' || cmd == 'h' {
ax = coordFloats[di-1]
if isRelCmd {
ay = 0
} else {
ay = p.y
}
} else if cmd == 'V' || cmd == 'v' {
if isRelCmd {
ax = 0
} else {
ax = p.x
}
ay = coordFloats[di-1]
} else {
ax = coordFloats[di-2]
ay = coordFloats[di-1]
}
// switch from L to H or V whenever possible
if cmd == 'L' || cmd == 'l' {
if isRelCmd {
if coordFloats[0] == 0 {
cmd = 'v'
coords = coords[1:]
coordFloats = coordFloats[1:]
} else if coordFloats[1] == 0 {
cmd = 'h'
coords = coords[:1]
coordFloats = coordFloats[:1]
}
} else {
if coordFloats[0] == p.x {
cmd = 'V'
coords = coords[1:]
coordFloats = coordFloats[1:]
} else if coordFloats[1] == p.y {
cmd = 'H'
coords = coords[:1]
coordFloats = coordFloats[:1]
}
}
}
// make a current and alternated path with absolute/relative altered
var curState, altState PathDataState
curState = p.shortenCurPosInstruction(cmd, coords)
if isRelCmd {
altState = p.shortenAltPosInstruction(cmd-'a'+'A', coordFloats, p.x, p.y)
} else {
altState = p.shortenAltPosInstruction(cmd-'A'+'a', coordFloats, -p.x, -p.y)
}
// choose shortest, relative or absolute path?
if len(p.altBuffer) < len(p.curBuffer) {
j += copy(b[j:], p.altBuffer)
p.state = altState
} else {
j += copy(b[j:], p.curBuffer)
p.state = curState
}
if isRelCmd {
p.x += ax
p.y += ay
} else {
p.x = ax
p.y = ay
}
}
return j
}
func (p *PathData) shortenCurPosInstruction(cmd byte, coords [][]byte) PathDataState {
state := p.state
p.curBuffer = p.curBuffer[:0]
if cmd != state.cmd && !(state.cmd == 'M' && cmd == 'L' || state.cmd == 'm' && cmd == 'l') {
p.curBuffer = append(p.curBuffer, cmd)
state.cmd = cmd
state.prevDigit = false
state.prevDigitIsInt = false
}
for _, coord := range coords {
coord = minify.Number(coord, p.o.Decimals)
state.copyNumber(&p.curBuffer, coord)
}
return state
}
func (p *PathData) shortenAltPosInstruction(cmd byte, coordFloats []float64, x, y float64) PathDataState {
state := p.state
p.altBuffer = p.altBuffer[:0]
if cmd != state.cmd && !(state.cmd == 'M' && cmd == 'L' || state.cmd == 'm' && cmd == 'l') {
p.altBuffer = append(p.altBuffer, cmd)
state.cmd = cmd
state.prevDigit = false
state.prevDigitIsInt = false
}
for i, f := range coordFloats {
if cmd == 'L' || cmd == 'l' || cmd == 'C' || cmd == 'c' || cmd == 'S' || cmd == 's' || cmd == 'Q' || cmd == 'q' || cmd == 'T' || cmd == 't' || cmd == 'M' || cmd == 'm' {
if i%2 == 0 {
f += x
} else {
f += y
}
} else if cmd == 'H' || cmd == 'h' {
f += x
} else if cmd == 'V' || cmd == 'v' {
f += y
} else if cmd == 'A' || cmd == 'a' {
if i%7 == 5 {
f += x
} else if i%7 == 6 {
f += y
}
}
p.coordBuffer = strconvStdlib.AppendFloat(p.coordBuffer[:0], f, 'g', -1, 64)
coord := minify.Number(p.coordBuffer, p.o.Decimals)
state.copyNumber(&p.altBuffer, coord)
}
return state
}
func (state *PathDataState) copyNumber(buffer *[]byte, coord []byte) {
if state.prevDigit && (coord[0] >= '0' && coord[0] <= '9' || coord[0] == '.' && state.prevDigitIsInt) {
if coord[0] == '0' && !state.prevDigitIsInt {
// if the first digit is zero, it is always just zero
*buffer = append(*buffer, '.', '0')
// prevDigit and prevDigitIsInt stay true
return
} else {
*buffer = append(*buffer, ' ')
}
}
state.prevDigit = true
state.prevDigitIsInt = true
if len(coord) > 2 && coord[len(coord)-2] == '0' && coord[len(coord)-1] == '0' {
coord[len(coord)-2] = 'e'
coord[len(coord)-1] = '2'
state.prevDigitIsInt = false
} else {
for _, c := range coord {
if c == '.' || c == 'e' || c == 'E' {
state.prevDigitIsInt = false
break
}
}
}
*buffer = append(*buffer, coord...)
}

427
vendor/github.com/tdewolff/minify/svg/svg.go generated vendored Normal file
View file

@ -0,0 +1,427 @@
// Package svg minifies SVG1.1 following the specifications at http://www.w3.org/TR/SVG11/.
package svg
import (
"io"
"github.com/tdewolff/buffer"
"github.com/tdewolff/minify"
minifyCSS "github.com/tdewolff/minify/css"
"github.com/tdewolff/parse"
"github.com/tdewolff/parse/css"
"github.com/tdewolff/parse/svg"
"github.com/tdewolff/parse/xml"
)
var (
voidBytes = []byte("/>")
isBytes = []byte("=")
spaceBytes = []byte(" ")
cdataEndBytes = []byte("]]>")
pathBytes = []byte("<path")
dBytes = []byte("d")
zeroBytes = []byte("0")
cssMimeBytes = []byte("text/css")
)
////////////////////////////////////////////////////////////////
// Minifier is an SVG minifier.
type Minifier struct {
Decimals int
}
// Minify minifies SVG data, it reads from r and writes to w.
func Minify(m *minify.M, w io.Writer, r io.Reader, params map[string]string) error {
return (&Minifier{Decimals: -1}).Minify(m, w, r, params)
}
// Minify minifies SVG data, it reads from r and writes to w.
func (o *Minifier) Minify(m *minify.M, w io.Writer, r io.Reader, _ map[string]string) error {
var tag svg.Hash
defaultStyleType := cssMimeBytes
defaultStyleParams := map[string]string(nil)
defaultInlineStyleParams := map[string]string{"inline": "1"}
p := NewPathData(o)
minifyBuffer := buffer.NewWriter(make([]byte, 0, 64))
attrByteBuffer := make([]byte, 0, 64)
gStack := make([]bool, 0)
l := xml.NewLexer(r)
tb := NewTokenBuffer(l)
for {
t := *tb.Shift()
SWITCH:
switch t.TokenType {
case xml.ErrorToken:
if l.Err() == io.EOF {
return nil
}
return l.Err()
case xml.DOCTYPEToken:
if len(t.Text) > 0 && t.Text[len(t.Text)-1] == ']' {
if _, err := w.Write(t.Data); err != nil {
return err
}
}
case xml.TextToken:
t.Data = parse.ReplaceMultipleWhitespace(parse.TrimWhitespace(t.Data))
if tag == svg.Style && len(t.Data) > 0 {
if err := m.MinifyMimetype(defaultStyleType, w, buffer.NewReader(t.Data), defaultStyleParams); err != nil {
if err != minify.ErrNotExist {
return err
} else if _, err := w.Write(t.Data); err != nil {
return err
}
}
} else if _, err := w.Write(t.Data); err != nil {
return err
}
case xml.CDATAToken:
if tag == svg.Style {
minifyBuffer.Reset()
if err := m.MinifyMimetype(defaultStyleType, minifyBuffer, buffer.NewReader(t.Text), defaultStyleParams); err == nil {
t.Data = append(t.Data[:9], minifyBuffer.Bytes()...)
t.Text = t.Data[9:]
t.Data = append(t.Data, cdataEndBytes...)
} else if err != minify.ErrNotExist {
return err
}
}
var useText bool
if t.Text, useText = xml.EscapeCDATAVal(&attrByteBuffer, t.Text); useText {
t.Text = parse.ReplaceMultipleWhitespace(parse.TrimWhitespace(t.Text))
if _, err := w.Write(t.Text); err != nil {
return err
}
} else if _, err := w.Write(t.Data); err != nil {
return err
}
case xml.StartTagPIToken:
for {
if t := *tb.Shift(); t.TokenType == xml.StartTagClosePIToken || t.TokenType == xml.ErrorToken {
break
}
}
case xml.StartTagToken:
tag = t.Hash
if containerTagMap[tag] { // skip empty containers
i := 0
for {
next := tb.Peek(i)
i++
if next.TokenType == xml.EndTagToken && next.Hash == tag || next.TokenType == xml.StartTagCloseVoidToken || next.TokenType == xml.ErrorToken {
for j := 0; j < i; j++ {
tb.Shift()
}
break SWITCH
} else if next.TokenType != xml.AttributeToken && next.TokenType != xml.StartTagCloseToken {
break
}
}
if tag == svg.G {
if tb.Peek(0).TokenType == xml.StartTagCloseToken {
gStack = append(gStack, false)
tb.Shift()
break
}
gStack = append(gStack, true)
}
} else if tag == svg.Metadata {
skipTag(tb, tag)
break
} else if tag == svg.Line {
o.shortenLine(tb, &t, p)
} else if tag == svg.Rect && !o.shortenRect(tb, &t, p) {
skipTag(tb, tag)
break
} else if tag == svg.Polygon || tag == svg.Polyline {
o.shortenPoly(tb, &t, p)
}
if _, err := w.Write(t.Data); err != nil {
return err
}
case xml.AttributeToken:
if len(t.AttrVal) == 0 || t.Text == nil { // data is nil when attribute has been removed
continue
}
attr := t.Hash
val := t.AttrVal
if n, m := parse.Dimension(val); n+m == len(val) { // TODO: inefficient, temporary measure
val, _ = o.shortenDimension(val)
}
if attr == svg.Xml_Space && parse.Equal(val, []byte("preserve")) ||
tag == svg.Svg && (attr == svg.Version && parse.Equal(val, []byte("1.1")) ||
attr == svg.X && parse.Equal(val, []byte("0")) ||
attr == svg.Y && parse.Equal(val, []byte("0")) ||
attr == svg.Width && parse.Equal(val, []byte("100%")) ||
attr == svg.Height && parse.Equal(val, []byte("100%")) ||
attr == svg.PreserveAspectRatio && parse.Equal(val, []byte("xMidYMid meet")) ||
attr == svg.BaseProfile && parse.Equal(val, []byte("none")) ||
attr == svg.ContentScriptType && parse.Equal(val, []byte("application/ecmascript")) ||
attr == svg.ContentStyleType && parse.Equal(val, []byte("text/css"))) ||
tag == svg.Style && attr == svg.Type && parse.Equal(val, []byte("text/css")) {
continue
}
if _, err := w.Write(spaceBytes); err != nil {
return err
}
if _, err := w.Write(t.Text); err != nil {
return err
}
if _, err := w.Write(isBytes); err != nil {
return err
}
if tag == svg.Svg && attr == svg.ContentStyleType {
val = minify.ContentType(val)
defaultStyleType = val
} else if attr == svg.Style {
minifyBuffer.Reset()
if err := m.MinifyMimetype(defaultStyleType, minifyBuffer, buffer.NewReader(val), defaultInlineStyleParams); err == nil {
val = minifyBuffer.Bytes()
} else if err != minify.ErrNotExist {
return err
}
} else if attr == svg.D {
val = p.ShortenPathData(val)
} else if attr == svg.ViewBox {
j := 0
newVal := val[:0]
for i := 0; i < 4; i++ {
if i != 0 {
if j >= len(val) || val[j] != ' ' && val[j] != ',' {
newVal = append(newVal, val[j:]...)
break
}
newVal = append(newVal, ' ')
j++
}
if dim, n := o.shortenDimension(val[j:]); n > 0 {
newVal = append(newVal, dim...)
j += n
} else {
newVal = append(newVal, val[j:]...)
break
}
}
val = newVal
} else if colorAttrMap[attr] && len(val) > 0 {
parse.ToLower(val)
if val[0] == '#' {
if name, ok := minifyCSS.ShortenColorHex[string(val)]; ok {
val = name
} else if len(val) == 7 && val[1] == val[2] && val[3] == val[4] && val[5] == val[6] {
val[2] = val[3]
val[3] = val[5]
val = val[:4]
}
} else if hex, ok := minifyCSS.ShortenColorName[css.ToHash(val)]; ok {
val = hex
} else if len(val) > 5 && parse.Equal(val[:4], []byte("rgb(")) && val[len(val)-1] == ')' {
// TODO: handle rgb(x, y, z) and hsl(x, y, z)
}
}
// prefer single or double quotes depending on what occurs more often in value
val = xml.EscapeAttrVal(&attrByteBuffer, val)
if _, err := w.Write(val); err != nil {
return err
}
case xml.StartTagCloseToken:
next := tb.Peek(0)
skipExtra := false
if next.TokenType == xml.TextToken && parse.IsAllWhitespace(next.Data) {
next = tb.Peek(1)
skipExtra = true
}
if next.TokenType == xml.EndTagToken {
// collapse empty tags to single void tag
tb.Shift()
if skipExtra {
tb.Shift()
}
if _, err := w.Write(voidBytes); err != nil {
return err
}
} else {
if _, err := w.Write(t.Data); err != nil {
return err
}
}
case xml.StartTagCloseVoidToken:
tag = 0
if _, err := w.Write(t.Data); err != nil {
return err
}
case xml.EndTagToken:
tag = 0
if t.Hash == svg.G && len(gStack) > 0 {
if !gStack[len(gStack)-1] {
gStack = gStack[:len(gStack)-1]
break
}
gStack = gStack[:len(gStack)-1]
}
if len(t.Data) > 3+len(t.Text) {
t.Data[2+len(t.Text)] = '>'
t.Data = t.Data[:3+len(t.Text)]
}
if _, err := w.Write(t.Data); err != nil {
return err
}
}
}
}
func (o *Minifier) shortenDimension(b []byte) ([]byte, int) {
if n, m := parse.Dimension(b); n > 0 {
unit := b[n : n+m]
b = minify.Number(b[:n], o.Decimals)
if len(b) != 1 || b[0] != '0' {
if m == 2 && unit[0] == 'p' && unit[1] == 'x' {
unit = nil
} else if m > 1 { // only percentage is length 1
parse.ToLower(unit)
}
b = append(b, unit...)
}
return b, n + m
}
return b, 0
}
func (o *Minifier) shortenLine(tb *TokenBuffer, t *Token, p *PathData) {
x1, y1, x2, y2 := zeroBytes, zeroBytes, zeroBytes, zeroBytes
if attrs, replacee := tb.Attributes(svg.X1, svg.Y1, svg.X2, svg.Y2); replacee != nil {
if attrs[0] != nil {
x1 = minify.Number(attrs[0].AttrVal, o.Decimals)
attrs[0].Text = nil
}
if attrs[1] != nil {
y1 = minify.Number(attrs[1].AttrVal, o.Decimals)
attrs[1].Text = nil
}
if attrs[2] != nil {
x2 = minify.Number(attrs[2].AttrVal, o.Decimals)
attrs[2].Text = nil
}
if attrs[3] != nil {
y2 = minify.Number(attrs[3].AttrVal, o.Decimals)
attrs[3].Text = nil
}
d := make([]byte, 0, 5+len(x1)+len(y1)+len(x2)+len(y2))
d = append(d, 'M')
d = append(d, x1...)
d = append(d, ' ')
d = append(d, y1...)
d = append(d, 'L')
d = append(d, x2...)
d = append(d, ' ')
d = append(d, y2...)
d = append(d, 'z')
d = p.ShortenPathData(d)
t.Data = pathBytes
replacee.Text = dBytes
replacee.AttrVal = d
}
}
func (o *Minifier) shortenRect(tb *TokenBuffer, t *Token, p *PathData) bool {
if attrs, replacee := tb.Attributes(svg.X, svg.Y, svg.Width, svg.Height, svg.Rx, svg.Ry); replacee != nil && attrs[4] == nil && attrs[5] == nil {
x, y, w, h := zeroBytes, zeroBytes, zeroBytes, zeroBytes
if attrs[0] != nil {
x = minify.Number(attrs[0].AttrVal, o.Decimals)
attrs[0].Text = nil
}
if attrs[1] != nil {
y = minify.Number(attrs[1].AttrVal, o.Decimals)
attrs[1].Text = nil
}
if attrs[2] != nil {
w = minify.Number(attrs[2].AttrVal, o.Decimals)
attrs[2].Text = nil
}
if attrs[3] != nil {
h = minify.Number(attrs[3].AttrVal, o.Decimals)
attrs[3].Text = nil
}
if len(w) == 0 || w[0] == '0' || len(h) == 0 || h[0] == '0' {
return false
}
d := make([]byte, 0, 6+2*len(x)+len(y)+len(w)+len(h))
d = append(d, 'M')
d = append(d, x...)
d = append(d, ' ')
d = append(d, y...)
d = append(d, 'h')
d = append(d, w...)
d = append(d, 'v')
d = append(d, h...)
d = append(d, 'H')
d = append(d, x...)
d = append(d, 'z')
d = p.ShortenPathData(d)
t.Data = pathBytes
replacee.Text = dBytes
replacee.AttrVal = d
}
return true
}
func (o *Minifier) shortenPoly(tb *TokenBuffer, t *Token, p *PathData) {
if attrs, replacee := tb.Attributes(svg.Points); replacee != nil && attrs[0] != nil {
points := attrs[0].AttrVal
i := 0
for i < len(points) && !(points[i] == ' ' || points[i] == ',' || points[i] == '\n' || points[i] == '\r' || points[i] == '\t') {
i++
}
for i < len(points) && (points[i] == ' ' || points[i] == ',' || points[i] == '\n' || points[i] == '\r' || points[i] == '\t') {
i++
}
for i < len(points) && !(points[i] == ' ' || points[i] == ',' || points[i] == '\n' || points[i] == '\r' || points[i] == '\t') {
i++
}
endMoveTo := i
for i < len(points) && (points[i] == ' ' || points[i] == ',' || points[i] == '\n' || points[i] == '\r' || points[i] == '\t') {
i++
}
startLineTo := i
if i == len(points) {
return
}
d := make([]byte, 0, len(points)+3)
d = append(d, 'M')
d = append(d, points[:endMoveTo]...)
d = append(d, 'L')
d = append(d, points[startLineTo:]...)
if t.Hash == svg.Polygon {
d = append(d, 'z')
}
d = p.ShortenPathData(d)
t.Data = pathBytes
replacee.Text = dBytes
replacee.AttrVal = d
}
}
////////////////////////////////////////////////////////////////
func skipTag(tb *TokenBuffer, tag svg.Hash) {
for {
if t := *tb.Shift(); (t.TokenType == xml.EndTagToken || t.TokenType == xml.StartTagCloseVoidToken) && t.Hash == tag || t.TokenType == xml.ErrorToken {
break
}
}
}

97
vendor/github.com/tdewolff/minify/svg/table.go generated vendored Normal file
View file

@ -0,0 +1,97 @@
package svg
import "github.com/tdewolff/parse/svg"
var containerTagMap = map[svg.Hash]bool{
svg.A: true,
svg.Defs: true,
svg.G: true,
svg.Marker: true,
svg.Mask: true,
svg.Missing_Glyph: true,
svg.Pattern: true,
svg.Svg: true,
svg.Switch: true,
svg.Symbol: true,
}
var colorAttrMap = map[svg.Hash]bool{
svg.Color: true,
svg.Fill: true,
svg.Stroke: true,
svg.Stop_Color: true,
svg.Flood_Color: true,
svg.Lighting_Color: true,
}
// var styleAttrMap = map[svg.Hash]bool{
// svg.Font: true,
// svg.Font_Family: true,
// svg.Font_Size: true,
// svg.Font_Size_Adjust: true,
// svg.Font_Stretch: true,
// svg.Font_Style: true,
// svg.Font_Variant: true,
// svg.Font_Weight: true,
// svg.Direction: true,
// svg.Letter_Spacing: true,
// svg.Text_Decoration: true,
// svg.Unicode_Bidi: true,
// svg.White_Space: true,
// svg.Word_Spacing: true,
// svg.Clip: true,
// svg.Color: true,
// svg.Cursor: true,
// svg.Display: true,
// svg.Overflow: true,
// svg.Visibility: true,
// svg.Clip_Path: true,
// svg.Clip_Rule: true,
// svg.Mask: true,
// svg.Opacity: true,
// svg.Enable_Background: true,
// svg.Filter: true,
// svg.Flood_Color: true,
// svg.Flood_Opacity: true,
// svg.Lighting_Color: true,
// svg.Solid_Color: true,
// svg.Solid_Opacity: true,
// svg.Stop_Color: true,
// svg.Stop_Opacity: true,
// svg.Pointer_Events: true,
// svg.Buffered_Rendering: true,
// svg.Color_Interpolation: true,
// svg.Color_Interpolation_Filters: true,
// svg.Color_Profile: true,
// svg.Color_Rendering: true,
// svg.Fill: true,
// svg.Fill_Opacity: true,
// svg.Fill_Rule: true,
// svg.Image_Rendering: true,
// svg.Marker: true,
// svg.Marker_End: true,
// svg.Marker_Mid: true,
// svg.Marker_Start: true,
// svg.Shape_Rendering: true,
// svg.Stroke: true,
// svg.Stroke_Dasharray: true,
// svg.Stroke_Dashoffset: true,
// svg.Stroke_Linecap: true,
// svg.Stroke_Linejoin: true,
// svg.Stroke_Miterlimit: true,
// svg.Stroke_Opacity: true,
// svg.Stroke_Width: true,
// svg.Paint_Order: true,
// svg.Vector_Effect: true,
// svg.Viewport_Fill: true,
// svg.Viewport_Fill_Opacity: true,
// svg.Text_Rendering: true,
// svg.Alignment_Baseline: true,
// svg.Baseline_Shift: true,
// svg.Dominant_Baseline: true,
// svg.Glyph_Orientation_Horizontal: true,
// svg.Glyph_Orientation_Vertical: true,
// svg.Kerning: true,
// svg.Text_Anchor: true,
// svg.Writing_Mode: true,
// }

3
vendor/github.com/tdewolff/parse/.travis.yml generated vendored Normal file
View file

@ -0,0 +1,3 @@
language: go
script:
- go test -v ./...

22
vendor/github.com/tdewolff/parse/LICENSE.md generated vendored Normal file
View file

@ -0,0 +1,22 @@
Copyright (c) 2015 Taco de Wolff
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

38
vendor/github.com/tdewolff/parse/README.md generated vendored Normal file
View file

@ -0,0 +1,38 @@
# Parse [![Build Status](https://travis-ci.org/tdewolff/parse.svg?branch=master)](https://travis-ci.org/tdewolff/parse) [![GoDoc](http://godoc.org/github.com/tdewolff/parse?status.svg)](http://godoc.org/github.com/tdewolff/parse)
This package contains several lexers and parsers written in [Go][1]. All subpackages are built to be streaming, high performance and to be in accordance with the official (latest) specifications.
The lexers are implemented using `buffer.Lexer` in https://github.com/tdewolff/buffer and the parsers work on top of the lexers. Some subpackages have hashes defined (using [Hasher](https://github.com/tdewolff/hasher)) that speed up common byte-slice comparisons.
## CSS
This package is a CSS3 lexer and parser. Both follow the specification at [CSS Syntax Module Level 3](http://www.w3.org/TR/css-syntax-3/). The lexer takes an io.Reader and converts it into tokens until the EOF. The parser returns a parse tree of the full io.Reader input stream, but the low-level `Next` function can be used for stream parsing to returns grammar units until the EOF.
[See README here](https://github.com/tdewolff/parse/tree/master/css).
## HTML
This package is an HTML5 lexer. It follows the specification at [The HTML syntax](http://www.w3.org/TR/html5/syntax.html). The lexer takes an io.Reader and converts it into tokens until the EOF.
[See README here](https://github.com/tdewolff/parse/tree/master/html).
## JS
This package is a JS lexer (ECMA-262, edition 6.0). It follows the specification at [ECMAScript Language Specification](http://www.ecma-international.org/ecma-262/6.0/). The lexer takes an io.Reader and converts it into tokens until the EOF.
[See README here](https://github.com/tdewolff/parse/tree/master/js).
## JSON
This package is a JSON parser (ECMA-404). It follows the specification at [JSON](http://json.org/). The parser takes an io.Reader and converts it into tokens until the EOF.
[See README here](https://github.com/tdewolff/parse/tree/master/json).
## SVG
This package contains common hashes for SVG1.1 tags and attributes.
## XML
This package is an XML1.0 lexer. It follows the specification at [Extensible Markup Language (XML) 1.0 (Fifth Edition)](http://www.w3.org/TR/xml/). The lexer takes an io.Reader and converts it into tokens until the EOF.
[See README here](https://github.com/tdewolff/parse/tree/master/xml).
## License
Released under the [MIT license](LICENSE.md).
[1]: http://golang.org/ "Go Language"

230
vendor/github.com/tdewolff/parse/common.go generated vendored Normal file
View file

@ -0,0 +1,230 @@
// Package parse contains a collection of parsers for various formats in its subpackages.
package parse
import (
"encoding/base64"
"errors"
"net/url"
)
// ErrBadDataURI is returned by DataURI when the byte slice does not start with 'data:' or is too short.
var ErrBadDataURI = errors.New("not a data URI")
// Number returns the number of bytes that parse as a number of the regex format (+|-)?([0-9]+(\.[0-9]+)?|\.[0-9]+)((e|E)(+|-)?[0-9]+)?.
func Number(b []byte) int {
if len(b) == 0 {
return 0
}
i := 0
if b[i] == '+' || b[i] == '-' {
i++
if i >= len(b) {
return 0
}
}
firstDigit := (b[i] >= '0' && b[i] <= '9')
if firstDigit {
i++
for i < len(b) && b[i] >= '0' && b[i] <= '9' {
i++
}
}
if i < len(b) && b[i] == '.' {
i++
if i < len(b) && b[i] >= '0' && b[i] <= '9' {
i++
for i < len(b) && b[i] >= '0' && b[i] <= '9' {
i++
}
} else if firstDigit {
// . could belong to the next token
i--
return i
} else {
return 0
}
} else if !firstDigit {
return 0
}
iOld := i
if i < len(b) && (b[i] == 'e' || b[i] == 'E') {
i++
if i < len(b) && (b[i] == '+' || b[i] == '-') {
i++
}
if i >= len(b) || b[i] < '0' || b[i] > '9' {
// e could belong to next token
return iOld
}
for i < len(b) && b[i] >= '0' && b[i] <= '9' {
i++
}
}
return i
}
// Dimension parses a byte-slice and returns the length of the number and its unit.
func Dimension(b []byte) (int, int) {
num := Number(b)
if num == 0 || num == len(b) {
return num, 0
} else if b[num] == '%' {
return num, 1
} else if b[num] >= 'a' && b[num] <= 'z' || b[num] >= 'A' && b[num] <= 'Z' {
i := num + 1
for i < len(b) && (b[i] >= 'a' && b[i] <= 'z' || b[i] >= 'A' && b[i] <= 'Z') {
i++
}
return num, i - num
}
return num, 0
}
// Mediatype parses a given mediatype and splits the mimetype from the parameters.
// It works similar to mime.ParseMediaType but is faster.
func Mediatype(b []byte) ([]byte, map[string]string) {
i := 0
for i < len(b) && b[i] == ' ' {
i++
}
b = b[i:]
n := len(b)
mimetype := b
var params map[string]string
for i := 3; i < n; i++ { // mimetype is at least three characters long
if b[i] == ';' || b[i] == ' ' {
mimetype = b[:i]
if b[i] == ' ' {
i++
for i < n && b[i] == ' ' {
i++
}
if i < n && b[i] != ';' {
break
}
}
params = map[string]string{}
s := string(b)
PARAM:
i++
for i < n && s[i] == ' ' {
i++
}
start := i
for i < n && s[i] != '=' && s[i] != ';' && s[i] != ' ' {
i++
}
key := s[start:i]
for i < n && s[i] == ' ' {
i++
}
if i < n && s[i] == '=' {
i++
for i < n && s[i] == ' ' {
i++
}
start = i
for i < n && s[i] != ';' && s[i] != ' ' {
i++
}
} else {
start = i
}
params[key] = s[start:i]
for i < n && s[i] == ' ' {
i++
}
if i < n && s[i] == ';' {
goto PARAM
}
break
}
}
return mimetype, params
}
// DataURI parses the given data URI and returns the mediatype, data and ok.
func DataURI(dataURI []byte) ([]byte, []byte, error) {
if len(dataURI) > 5 && Equal(dataURI[:5], []byte("data:")) {
dataURI = dataURI[5:]
inBase64 := false
var mediatype []byte
i := 0
for j := 0; j < len(dataURI); j++ {
c := dataURI[j]
if c == '=' || c == ';' || c == ',' {
if c != '=' && Equal(TrimWhitespace(dataURI[i:j]), []byte("base64")) {
if len(mediatype) > 0 {
mediatype = mediatype[:len(mediatype)-1]
}
inBase64 = true
i = j
} else if c != ',' {
mediatype = append(append(mediatype, TrimWhitespace(dataURI[i:j])...), c)
i = j + 1
} else {
mediatype = append(mediatype, TrimWhitespace(dataURI[i:j])...)
}
if c == ',' {
if len(mediatype) == 0 || mediatype[0] == ';' {
mediatype = []byte("text/plain")
}
data := dataURI[j+1:]
if inBase64 {
decoded := make([]byte, base64.StdEncoding.DecodedLen(len(data)))
n, err := base64.StdEncoding.Decode(decoded, data)
if err != nil {
return nil, nil, err
}
data = decoded[:n]
} else if unescaped, err := url.QueryUnescape(string(data)); err == nil {
data = []byte(unescaped)
}
return mediatype, data, nil
}
}
}
}
return nil, nil, ErrBadDataURI
}
// QuoteEntity parses the given byte slice and returns the quote that got matched (' or ") and its entity length.
func QuoteEntity(b []byte) (quote byte, n int) {
if len(b) < 5 || b[0] != '&' {
return 0, 0
}
if b[1] == '#' {
if b[2] == 'x' {
i := 3
for i < len(b) && b[i] == '0' {
i++
}
if i+2 < len(b) && b[i] == '2' && b[i+2] == ';' {
if b[i+1] == '2' {
return '"', i + 3 // &#x22;
} else if b[i+1] == '7' {
return '\'', i + 3 // &#x27;
}
}
} else {
i := 2
for i < len(b) && b[i] == '0' {
i++
}
if i+2 < len(b) && b[i] == '3' && b[i+2] == ';' {
if b[i+1] == '4' {
return '"', i + 3 // &#34;
} else if b[i+1] == '9' {
return '\'', i + 3 // &#39;
}
}
}
} else if len(b) >= 6 && b[5] == ';' {
if EqualFold(b[1:5], []byte{'q', 'u', 'o', 't'}) {
return '"', 6 // &quot;
} else if EqualFold(b[1:5], []byte{'a', 'p', 'o', 's'}) {
return '\'', 6 // &apos;
}
}
return 0, 0
}

171
vendor/github.com/tdewolff/parse/css/README.md generated vendored Normal file
View file

@ -0,0 +1,171 @@
# CSS [![GoDoc](http://godoc.org/github.com/tdewolff/parse/css?status.svg)](http://godoc.org/github.com/tdewolff/parse/css) [![GoCover](http://gocover.io/_badge/github.com/tdewolff/parse/css)](http://gocover.io/github.com/tdewolff/parse/css)
This package is a CSS3 lexer and parser written in [Go][1]. Both follow the specification at [CSS Syntax Module Level 3](http://www.w3.org/TR/css-syntax-3/). The lexer takes an io.Reader and converts it into tokens until the EOF. The parser returns a parse tree of the full io.Reader input stream, but the low-level `Next` function can be used for stream parsing to returns grammar units until the EOF.
## Installation
Run the following command
go get github.com/tdewolff/parse/css
or add the following import and run project with `go get`
import "github.com/tdewolff/parse/css"
## Lexer
### Usage
The following initializes a new Lexer with io.Reader `r`:
``` go
l := css.NewLexer(r)
```
To tokenize until EOF an error, use:
``` go
for {
tt, text := l.Next()
switch tt {
case css.ErrorToken:
// error or EOF set in l.Err()
return
// ...
}
}
```
All tokens (see [CSS Syntax Module Level 3](http://www.w3.org/TR/css3-syntax/)):
``` go
ErrorToken // non-official token, returned when errors occur
IdentToken
FunctionToken // rgb( rgba( ...
AtKeywordToken // @abc
HashToken // #abc
StringToken
BadStringToken
UrlToken // url(
BadUrlToken
DelimToken // any unmatched character
NumberToken // 5
PercentageToken // 5%
DimensionToken // 5em
UnicodeRangeToken
IncludeMatchToken // ~=
DashMatchToken // |=
PrefixMatchToken // ^=
SuffixMatchToken // $=
SubstringMatchToken // *=
ColumnToken // ||
WhitespaceToken
CDOToken // <!--
CDCToken // -->
ColonToken
SemicolonToken
CommaToken
BracketToken // ( ) [ ] { }, all bracket tokens use this, Data() can distinguish between the brackets
CommentToken // non-official token
```
### Examples
``` go
package main
import (
"os"
"github.com/tdewolff/parse/css"
)
// Tokenize CSS3 from stdin.
func main() {
l := css.NewLexer(os.Stdin)
for {
tt, text := l.Next()
switch tt {
case css.ErrorToken:
if l.Err() != io.EOF {
fmt.Println("Error on line", l.Line(), ":", l.Err())
}
return
case css.IdentToken:
fmt.Println("Identifier", string(text))
case css.NumberToken:
fmt.Println("Number", string(text))
// ...
}
}
}
```
## Parser
### Usage
The following creates a new Parser.
``` go
// false because this is the content of an inline style attribute
p := css.NewParser(bytes.NewBufferString("color: red;"), false)
```
To iterate over the stylesheet, use:
``` go
for {
gt, _, data := p.Next()
if gt == css.ErrorGrammar {
break
}
// ...
}
```
All grammar units returned by `Next`:
``` go
ErrorGrammar
AtRuleGrammar
EndAtRuleGrammar
RulesetGrammar
EndRulesetGrammar
DeclarationGrammar
TokenGrammar
```
### Examples
``` go
package main
import (
"bytes"
"fmt"
"github.com/tdewolff/parse/css"
)
func main() {
// false because this is the content of an inline style attribute
p := css.NewParser(bytes.NewBufferString("color: red;"), false)
out := ""
for {
gt, _, data := p.Next()
if gt == css.ErrorGrammar {
break
} else if gt == css.AtRuleGrammar || gt == css.BeginAtRuleGrammar || gt == css.BeginRulesetGrammar || gt == css.DeclarationGrammar {
out += string(data)
if gt == css.DeclarationGrammar {
out += ":"
}
for _, val := range p.Values() {
out += string(val.Data)
}
if gt == css.BeginAtRuleGrammar || gt == css.BeginRulesetGrammar {
out += "{"
} else if gt == css.AtRuleGrammar || gt == css.DeclarationGrammar {
out += ";"
}
} else {
out += string(data)
}
}
fmt.Println(out)
}
```
## License
Released under the [MIT license](https://github.com/tdewolff/parse/blob/master/LICENSE.md).
[1]: http://golang.org/ "Go Language"

676
vendor/github.com/tdewolff/parse/css/hash.go generated vendored Normal file
View file

@ -0,0 +1,676 @@
package css
// generated by hasher -file hash.go -type Hash; DO NOT EDIT, except for adding more constants to the list and rerun go generate
// uses github.com/tdewolff/hasher
//go:generate hasher -type=Hash -file=hash.go
// Hash defines perfect hashes for a predefined list of strings
type Hash uint32
// Unique hash definitions to be used instead of strings
const (
Accelerator Hash = 0x47f0b // accelerator
Aliceblue Hash = 0x52509 // aliceblue
Alpha Hash = 0x5af05 // alpha
Antiquewhite Hash = 0x45c0c // antiquewhite
Aquamarine Hash = 0x7020a // aquamarine
Azimuth Hash = 0x5b307 // azimuth
Background Hash = 0xa // background
Background_Attachment Hash = 0x3a15 // background-attachment
Background_Color Hash = 0x11c10 // background-color
Background_Image Hash = 0x99210 // background-image
Background_Position Hash = 0x13 // background-position
Background_Position_X Hash = 0x80815 // background-position-x
Background_Position_Y Hash = 0x15 // background-position-y
Background_Repeat Hash = 0x1511 // background-repeat
Behavior Hash = 0x3108 // behavior
Black Hash = 0x6005 // black
Blanchedalmond Hash = 0x650e // blanchedalmond
Blueviolet Hash = 0x52a0a // blueviolet
Bold Hash = 0x7a04 // bold
Border Hash = 0x8506 // border
Border_Bottom Hash = 0x850d // border-bottom
Border_Bottom_Color Hash = 0x8513 // border-bottom-color
Border_Bottom_Style Hash = 0xbe13 // border-bottom-style
Border_Bottom_Width Hash = 0xe113 // border-bottom-width
Border_Collapse Hash = 0x1020f // border-collapse
Border_Color Hash = 0x1350c // border-color
Border_Left Hash = 0x15c0b // border-left
Border_Left_Color Hash = 0x15c11 // border-left-color
Border_Left_Style Hash = 0x17911 // border-left-style
Border_Left_Width Hash = 0x18a11 // border-left-width
Border_Right Hash = 0x19b0c // border-right
Border_Right_Color Hash = 0x19b12 // border-right-color
Border_Right_Style Hash = 0x1ad12 // border-right-style
Border_Right_Width Hash = 0x1bf12 // border-right-width
Border_Spacing Hash = 0x1d10e // border-spacing
Border_Style Hash = 0x1f40c // border-style
Border_Top Hash = 0x2000a // border-top
Border_Top_Color Hash = 0x20010 // border-top-color
Border_Top_Style Hash = 0x21010 // border-top-style
Border_Top_Width Hash = 0x22010 // border-top-width
Border_Width Hash = 0x2300c // border-width
Bottom Hash = 0x8c06 // bottom
Burlywood Hash = 0x23c09 // burlywood
Cadetblue Hash = 0x25809 // cadetblue
Caption_Side Hash = 0x2610c // caption-side
Charset Hash = 0x44207 // charset
Chartreuse Hash = 0x2730a // chartreuse
Chocolate Hash = 0x27d09 // chocolate
Clear Hash = 0x2ab05 // clear
Clip Hash = 0x2b004 // clip
Color Hash = 0x9305 // color
Content Hash = 0x2e507 // content
Cornflowerblue Hash = 0x2ff0e // cornflowerblue
Cornsilk Hash = 0x30d08 // cornsilk
Counter_Increment Hash = 0x31511 // counter-increment
Counter_Reset Hash = 0x3540d // counter-reset
Cue Hash = 0x36103 // cue
Cue_After Hash = 0x36109 // cue-after
Cue_Before Hash = 0x36a0a // cue-before
Cursive Hash = 0x37b07 // cursive
Cursor Hash = 0x38e06 // cursor
Darkblue Hash = 0x7208 // darkblue
Darkcyan Hash = 0x7d08 // darkcyan
Darkgoldenrod Hash = 0x2440d // darkgoldenrod
Darkgray Hash = 0x25008 // darkgray
Darkgreen Hash = 0x79209 // darkgreen
Darkkhaki Hash = 0x88509 // darkkhaki
Darkmagenta Hash = 0x4f40b // darkmagenta
Darkolivegreen Hash = 0x7210e // darkolivegreen
Darkorange Hash = 0x7860a // darkorange
Darkorchid Hash = 0x87c0a // darkorchid
Darksalmon Hash = 0x8c00a // darksalmon
Darkseagreen Hash = 0x9240c // darkseagreen
Darkslateblue Hash = 0x3940d // darkslateblue
Darkslategray Hash = 0x3a10d // darkslategray
Darkturquoise Hash = 0x3ae0d // darkturquoise
Darkviolet Hash = 0x3bb0a // darkviolet
Deeppink Hash = 0x26b08 // deeppink
Deepskyblue Hash = 0x8930b // deepskyblue
Default Hash = 0x57b07 // default
Direction Hash = 0x9f109 // direction
Display Hash = 0x3c507 // display
Document Hash = 0x3d308 // document
Dodgerblue Hash = 0x3db0a // dodgerblue
Elevation Hash = 0x4a009 // elevation
Empty_Cells Hash = 0x4c20b // empty-cells
Fantasy Hash = 0x5ce07 // fantasy
Filter Hash = 0x59806 // filter
Firebrick Hash = 0x3e509 // firebrick
Float Hash = 0x3ee05 // float
Floralwhite Hash = 0x3f30b // floralwhite
Font Hash = 0xd804 // font
Font_Face Hash = 0xd809 // font-face
Font_Family Hash = 0x41d0b // font-family
Font_Size Hash = 0x42809 // font-size
Font_Size_Adjust Hash = 0x42810 // font-size-adjust
Font_Stretch Hash = 0x4380c // font-stretch
Font_Style Hash = 0x4490a // font-style
Font_Variant Hash = 0x4530c // font-variant
Font_Weight Hash = 0x46e0b // font-weight
Forestgreen Hash = 0x3700b // forestgreen
Fuchsia Hash = 0x47907 // fuchsia
Gainsboro Hash = 0x14c09 // gainsboro
Ghostwhite Hash = 0x1de0a // ghostwhite
Goldenrod Hash = 0x24809 // goldenrod
Greenyellow Hash = 0x7960b // greenyellow
Height Hash = 0x68506 // height
Honeydew Hash = 0x5b908 // honeydew
Hsl Hash = 0xf303 // hsl
Hsla Hash = 0xf304 // hsla
Ime_Mode Hash = 0x88d08 // ime-mode
Import Hash = 0x4e306 // import
Important Hash = 0x4e309 // important
Include_Source Hash = 0x7f20e // include-source
Indianred Hash = 0x4ec09 // indianred
Inherit Hash = 0x51907 // inherit
Initial Hash = 0x52007 // initial
Keyframes Hash = 0x40109 // keyframes
Lavender Hash = 0xf508 // lavender
Lavenderblush Hash = 0xf50d // lavenderblush
Lawngreen Hash = 0x4da09 // lawngreen
Layer_Background_Color Hash = 0x11616 // layer-background-color
Layer_Background_Image Hash = 0x98c16 // layer-background-image
Layout_Flow Hash = 0x5030b // layout-flow
Layout_Grid Hash = 0x53f0b // layout-grid
Layout_Grid_Char Hash = 0x53f10 // layout-grid-char
Layout_Grid_Char_Spacing Hash = 0x53f18 // layout-grid-char-spacing
Layout_Grid_Line Hash = 0x55710 // layout-grid-line
Layout_Grid_Mode Hash = 0x56d10 // layout-grid-mode
Layout_Grid_Type Hash = 0x58210 // layout-grid-type
Left Hash = 0x16304 // left
Lemonchiffon Hash = 0xcf0c // lemonchiffon
Letter_Spacing Hash = 0x5310e // letter-spacing
Lightblue Hash = 0x59e09 // lightblue
Lightcoral Hash = 0x5a70a // lightcoral
Lightcyan Hash = 0x5d509 // lightcyan
Lightgoldenrodyellow Hash = 0x5de14 // lightgoldenrodyellow
Lightgray Hash = 0x60509 // lightgray
Lightgreen Hash = 0x60e0a // lightgreen
Lightpink Hash = 0x61809 // lightpink
Lightsalmon Hash = 0x6210b // lightsalmon
Lightseagreen Hash = 0x62c0d // lightseagreen
Lightskyblue Hash = 0x6390c // lightskyblue
Lightslateblue Hash = 0x6450e // lightslateblue
Lightsteelblue Hash = 0x6530e // lightsteelblue
Lightyellow Hash = 0x6610b // lightyellow
Limegreen Hash = 0x67709 // limegreen
Line_Break Hash = 0x5630a // line-break
Line_Height Hash = 0x6800b // line-height
List_Style Hash = 0x68b0a // list-style
List_Style_Image Hash = 0x68b10 // list-style-image
List_Style_Position Hash = 0x69b13 // list-style-position
List_Style_Type Hash = 0x6ae0f // list-style-type
Magenta Hash = 0x4f807 // magenta
Margin Hash = 0x2c006 // margin
Margin_Bottom Hash = 0x2c00d // margin-bottom
Margin_Left Hash = 0x2cc0b // margin-left
Margin_Right Hash = 0x3320c // margin-right
Margin_Top Hash = 0x7cd0a // margin-top
Marker_Offset Hash = 0x6bd0d // marker-offset
Marks Hash = 0x6ca05 // marks
Max_Height Hash = 0x6e90a // max-height
Max_Width Hash = 0x6f309 // max-width
Media Hash = 0xa1405 // media
Mediumaquamarine Hash = 0x6fc10 // mediumaquamarine
Mediumblue Hash = 0x70c0a // mediumblue
Mediumorchid Hash = 0x7160c // mediumorchid
Mediumpurple Hash = 0x72f0c // mediumpurple
Mediumseagreen Hash = 0x73b0e // mediumseagreen
Mediumslateblue Hash = 0x7490f // mediumslateblue
Mediumspringgreen Hash = 0x75811 // mediumspringgreen
Mediumturquoise Hash = 0x7690f // mediumturquoise
Mediumvioletred Hash = 0x7780f // mediumvioletred
Midnightblue Hash = 0x7a60c // midnightblue
Min_Height Hash = 0x7b20a // min-height
Min_Width Hash = 0x7bc09 // min-width
Mintcream Hash = 0x7c509 // mintcream
Mistyrose Hash = 0x7e309 // mistyrose
Moccasin Hash = 0x7ec08 // moccasin
Monospace Hash = 0x8c709 // monospace
Namespace Hash = 0x49809 // namespace
Navajowhite Hash = 0x4a80b // navajowhite
None Hash = 0x4bf04 // none
Normal Hash = 0x4d506 // normal
Olivedrab Hash = 0x80009 // olivedrab
Orangered Hash = 0x78a09 // orangered
Orphans Hash = 0x48807 // orphans
Outline Hash = 0x81d07 // outline
Outline_Color Hash = 0x81d0d // outline-color
Outline_Style Hash = 0x82a0d // outline-style
Outline_Width Hash = 0x8370d // outline-width
Overflow Hash = 0x2db08 // overflow
Overflow_X Hash = 0x2db0a // overflow-x
Overflow_Y Hash = 0x8440a // overflow-y
Padding Hash = 0x2b307 // padding
Padding_Bottom Hash = 0x2b30e // padding-bottom
Padding_Left Hash = 0x5f90c // padding-left
Padding_Right Hash = 0x7d60d // padding-right
Padding_Top Hash = 0x8d90b // padding-top
Page Hash = 0x84e04 // page
Page_Break_After Hash = 0x8e310 // page-break-after
Page_Break_Before Hash = 0x84e11 // page-break-before
Page_Break_Inside Hash = 0x85f11 // page-break-inside
Palegoldenrod Hash = 0x8700d // palegoldenrod
Palegreen Hash = 0x89e09 // palegreen
Paleturquoise Hash = 0x8a70d // paleturquoise
Palevioletred Hash = 0x8b40d // palevioletred
Papayawhip Hash = 0x8d00a // papayawhip
Pause Hash = 0x8f305 // pause
Pause_After Hash = 0x8f30b // pause-after
Pause_Before Hash = 0x8fe0c // pause-before
Peachpuff Hash = 0x59009 // peachpuff
Pitch Hash = 0x90a05 // pitch
Pitch_Range Hash = 0x90a0b // pitch-range
Play_During Hash = 0x3c80b // play-during
Position Hash = 0xb08 // position
Powderblue Hash = 0x9150a // powderblue
Progid Hash = 0x91f06 // progid
Quotes Hash = 0x93006 // quotes
Rgb Hash = 0x3803 // rgb
Rgba Hash = 0x3804 // rgba
Richness Hash = 0x9708 // richness
Right Hash = 0x1a205 // right
Rosybrown Hash = 0x15309 // rosybrown
Royalblue Hash = 0xb509 // royalblue
Ruby_Align Hash = 0x12b0a // ruby-align
Ruby_Overhang Hash = 0x1400d // ruby-overhang
Ruby_Position Hash = 0x16c0d // ruby-position
Saddlebrown Hash = 0x48e0b // saddlebrown
Sandybrown Hash = 0x4cc0a // sandybrown
Sans_Serif Hash = 0x5c50a // sans-serif
Scrollbar_3d_Light_Color Hash = 0x9e18 // scrollbar-3d-light-color
Scrollbar_Arrow_Color Hash = 0x29615 // scrollbar-arrow-color
Scrollbar_Base_Color Hash = 0x40914 // scrollbar-base-color
Scrollbar_Dark_Shadow_Color Hash = 0x6ce1b // scrollbar-dark-shadow-color
Scrollbar_Face_Color Hash = 0x93514 // scrollbar-face-color
Scrollbar_Highlight_Color Hash = 0x9ce19 // scrollbar-highlight-color
Scrollbar_Shadow_Color Hash = 0x94916 // scrollbar-shadow-color
Scrollbar_Track_Color Hash = 0x95f15 // scrollbar-track-color
Seagreen Hash = 0x63108 // seagreen
Seashell Hash = 0x10f08 // seashell
Serif Hash = 0x5ca05 // serif
Size Hash = 0x42d04 // size
Slateblue Hash = 0x39809 // slateblue
Slategray Hash = 0x3a509 // slategray
Speak Hash = 0x97405 // speak
Speak_Header Hash = 0x9740c // speak-header
Speak_Numeral Hash = 0x9800d // speak-numeral
Speak_Punctuation Hash = 0x9a211 // speak-punctuation
Speech_Rate Hash = 0x9b30b // speech-rate
Springgreen Hash = 0x75e0b // springgreen
Steelblue Hash = 0x65809 // steelblue
Stress Hash = 0x29106 // stress
Supports Hash = 0x9c708 // supports
Table_Layout Hash = 0x4fd0c // table-layout
Text_Align Hash = 0x2840a // text-align
Text_Align_Last Hash = 0x2840f // text-align-last
Text_Autospace Hash = 0x1e60e // text-autospace
Text_Decoration Hash = 0x4b10f // text-decoration
Text_Indent Hash = 0x9bc0b // text-indent
Text_Justify Hash = 0x250c // text-justify
Text_Kashida_Space Hash = 0x4e12 // text-kashida-space
Text_Overflow Hash = 0x2d60d // text-overflow
Text_Shadow Hash = 0x2eb0b // text-shadow
Text_Transform Hash = 0x3250e // text-transform
Text_Underline_Position Hash = 0x33d17 // text-underline-position
Top Hash = 0x20703 // top
Turquoise Hash = 0x3b209 // turquoise
Unicode_Bidi Hash = 0x9e70c // unicode-bidi
Vertical_Align Hash = 0x3800e // vertical-align
Visibility Hash = 0x9fa0a // visibility
Voice_Family Hash = 0xa040c // voice-family
Volume Hash = 0xa1006 // volume
White Hash = 0x1e305 // white
White_Space Hash = 0x4630b // white-space
Whitesmoke Hash = 0x3f90a // whitesmoke
Widows Hash = 0x5c006 // widows
Width Hash = 0xef05 // width
Word_Break Hash = 0x2f50a // word-break
Word_Spacing Hash = 0x50d0c // word-spacing
Word_Wrap Hash = 0x5f109 // word-wrap
Writing_Mode Hash = 0x66b0c // writing-mode
Yellow Hash = 0x5ec06 // yellow
Yellowgreen Hash = 0x79b0b // yellowgreen
Z_Index Hash = 0xa1907 // z-index
)
// String returns the hash' name.
func (i Hash) String() string {
start := uint32(i >> 8)
n := uint32(i & 0xff)
if start+n > uint32(len(_Hash_text)) {
return ""
}
return _Hash_text[start : start+n]
}
// ToHash returns the hash whose name is s. It returns zero if there is no
// such hash. It is case sensitive.
func ToHash(s []byte) Hash {
if len(s) == 0 || len(s) > _Hash_maxLen {
return 0
}
h := uint32(_Hash_hash0)
for i := 0; i < len(s); i++ {
h ^= uint32(s[i])
h *= 16777619
}
if i := _Hash_table[h&uint32(len(_Hash_table)-1)]; int(i&0xff) == len(s) {
t := _Hash_text[i>>8 : i>>8+i&0xff]
for i := 0; i < len(s); i++ {
if t[i] != s[i] {
goto NEXT
}
}
return i
}
NEXT:
if i := _Hash_table[(h>>16)&uint32(len(_Hash_table)-1)]; int(i&0xff) == len(s) {
t := _Hash_text[i>>8 : i>>8+i&0xff]
for i := 0; i < len(s); i++ {
if t[i] != s[i] {
return 0
}
}
return i
}
return 0
}
const _Hash_hash0 = 0x700e0976
const _Hash_maxLen = 27
const _Hash_text = "background-position-ybackground-repeatext-justifybehaviorgba" +
"ckground-attachmentext-kashida-spaceblackblanchedalmondarkbl" +
"ueboldarkcyanborder-bottom-colorichnesscrollbar-3d-light-col" +
"oroyalblueborder-bottom-stylemonchiffont-faceborder-bottom-w" +
"idthslavenderblushborder-collapseashellayer-background-color" +
"uby-alignborder-coloruby-overhangainsborosybrownborder-left-" +
"coloruby-positionborder-left-styleborder-left-widthborder-ri" +
"ght-colorborder-right-styleborder-right-widthborder-spacingh" +
"ostwhitext-autospaceborder-styleborder-top-colorborder-top-s" +
"tyleborder-top-widthborder-widthburlywoodarkgoldenrodarkgray" +
"cadetbluecaption-sideeppinkchartreusechocolatext-align-lastr" +
"esscrollbar-arrow-colorclearclipadding-bottomargin-bottomarg" +
"in-leftext-overflow-xcontentext-shadoword-breakcornflowerblu" +
"ecornsilkcounter-incrementext-transformargin-rightext-underl" +
"ine-positioncounter-resetcue-aftercue-beforestgreencursivert" +
"ical-aligncursordarkslatebluedarkslategraydarkturquoisedarkv" +
"ioletdisplay-duringdocumentdodgerbluefirebrickfloatfloralwhi" +
"tesmokeyframescrollbar-base-colorfont-familyfont-size-adjust" +
"font-stretcharsetfont-stylefont-variantiquewhite-spacefont-w" +
"eightfuchsiacceleratorphansaddlebrownamespacelevationavajowh" +
"itext-decorationonempty-cellsandybrownormalawngreenimportant" +
"indianredarkmagentable-layout-floword-spacinginheritinitiali" +
"cebluevioletter-spacinglayout-grid-char-spacinglayout-grid-l" +
"ine-breaklayout-grid-modefaultlayout-grid-typeachpuffilterli" +
"ghtbluelightcoralphazimuthoneydewidowsans-serifantasylightcy" +
"anlightgoldenrodyelloword-wrapadding-leftlightgraylightgreen" +
"lightpinklightsalmonlightseagreenlightskybluelightslatebluel" +
"ightsteelbluelightyellowriting-modelimegreenline-heightlist-" +
"style-imagelist-style-positionlist-style-typemarker-offsetma" +
"rkscrollbar-dark-shadow-colormax-heightmax-widthmediumaquama" +
"rinemediumbluemediumorchidarkolivegreenmediumpurplemediumsea" +
"greenmediumslatebluemediumspringgreenmediumturquoisemediumvi" +
"oletredarkorangeredarkgreenyellowgreenmidnightbluemin-height" +
"min-widthmintcreamargin-topadding-rightmistyrosemoccasinclud" +
"e-sourceolivedrabackground-position-xoutline-coloroutline-st" +
"yleoutline-widthoverflow-ypage-break-beforepage-break-inside" +
"palegoldenrodarkorchidarkkhakime-modeepskybluepalegreenpalet" +
"urquoisepalevioletredarksalmonospacepapayawhipadding-topage-" +
"break-afterpause-afterpause-beforepitch-rangepowderblueprogi" +
"darkseagreenquotescrollbar-face-colorscrollbar-shadow-colors" +
"crollbar-track-colorspeak-headerspeak-numeralayer-background" +
"-imagespeak-punctuationspeech-ratext-indentsupportscrollbar-" +
"highlight-colorunicode-bidirectionvisibilityvoice-familyvolu" +
"mediaz-index"
var _Hash_table = [1 << 9]Hash{
0x0: 0x4cc0a, // sandybrown
0x1: 0x20703, // top
0x4: 0xb509, // royalblue
0x6: 0x4b10f, // text-decoration
0xb: 0x5030b, // layout-flow
0xc: 0x11c10, // background-color
0xd: 0x8c06, // bottom
0x10: 0x62c0d, // lightseagreen
0x11: 0x8930b, // deepskyblue
0x12: 0x39809, // slateblue
0x13: 0x4c20b, // empty-cells
0x14: 0x2b004, // clip
0x15: 0x70c0a, // mediumblue
0x16: 0x49809, // namespace
0x18: 0x2c00d, // margin-bottom
0x1a: 0x1350c, // border-color
0x1b: 0x5b908, // honeydew
0x1d: 0x2300c, // border-width
0x1e: 0x9740c, // speak-header
0x1f: 0x8b40d, // palevioletred
0x20: 0x1d10e, // border-spacing
0x22: 0x2b307, // padding
0x23: 0x3320c, // margin-right
0x27: 0x7bc09, // min-width
0x29: 0x60509, // lightgray
0x2a: 0x6610b, // lightyellow
0x2c: 0x8e310, // page-break-after
0x2d: 0x2e507, // content
0x30: 0x250c, // text-justify
0x32: 0x2840f, // text-align-last
0x34: 0x93514, // scrollbar-face-color
0x35: 0x40109, // keyframes
0x37: 0x4f807, // magenta
0x38: 0x3a509, // slategray
0x3a: 0x99210, // background-image
0x3c: 0x7f20e, // include-source
0x3d: 0x65809, // steelblue
0x3e: 0x81d0d, // outline-color
0x40: 0x1020f, // border-collapse
0x41: 0xf508, // lavender
0x42: 0x9c708, // supports
0x44: 0x6800b, // line-height
0x45: 0x9a211, // speak-punctuation
0x46: 0x9fa0a, // visibility
0x47: 0x2ab05, // clear
0x4b: 0x52a0a, // blueviolet
0x4e: 0x57b07, // default
0x50: 0x6bd0d, // marker-offset
0x52: 0x31511, // counter-increment
0x53: 0x6450e, // lightslateblue
0x54: 0x10f08, // seashell
0x56: 0x16c0d, // ruby-position
0x57: 0x82a0d, // outline-style
0x58: 0x63108, // seagreen
0x59: 0x9305, // color
0x5c: 0x2610c, // caption-side
0x5d: 0x68506, // height
0x5e: 0x7490f, // mediumslateblue
0x5f: 0x8fe0c, // pause-before
0x60: 0xcf0c, // lemonchiffon
0x63: 0x37b07, // cursive
0x66: 0x4a80b, // navajowhite
0x67: 0xa040c, // voice-family
0x68: 0x2440d, // darkgoldenrod
0x69: 0x3e509, // firebrick
0x6a: 0x4490a, // font-style
0x6b: 0x9f109, // direction
0x6d: 0x7860a, // darkorange
0x6f: 0x4530c, // font-variant
0x70: 0x2c006, // margin
0x71: 0x84e11, // page-break-before
0x73: 0x2d60d, // text-overflow
0x74: 0x4e12, // text-kashida-space
0x75: 0x30d08, // cornsilk
0x76: 0x46e0b, // font-weight
0x77: 0x42d04, // size
0x78: 0x53f0b, // layout-grid
0x79: 0x8d90b, // padding-top
0x7a: 0x44207, // charset
0x7d: 0x7e309, // mistyrose
0x7e: 0x5b307, // azimuth
0x7f: 0x8f30b, // pause-after
0x84: 0x38e06, // cursor
0x85: 0xf303, // hsl
0x86: 0x5310e, // letter-spacing
0x8b: 0x3d308, // document
0x8d: 0x36109, // cue-after
0x8f: 0x36a0a, // cue-before
0x91: 0x5ce07, // fantasy
0x94: 0x1400d, // ruby-overhang
0x95: 0x2b30e, // padding-bottom
0x9a: 0x59e09, // lightblue
0x9c: 0x8c00a, // darksalmon
0x9d: 0x42810, // font-size-adjust
0x9e: 0x61809, // lightpink
0xa0: 0x9240c, // darkseagreen
0xa2: 0x85f11, // page-break-inside
0xa4: 0x24809, // goldenrod
0xa6: 0xa1405, // media
0xa7: 0x53f18, // layout-grid-char-spacing
0xa9: 0x4e309, // important
0xaa: 0x7b20a, // min-height
0xb0: 0x15c11, // border-left-color
0xb1: 0x84e04, // page
0xb2: 0x98c16, // layer-background-image
0xb5: 0x55710, // layout-grid-line
0xb6: 0x1511, // background-repeat
0xb7: 0x8513, // border-bottom-color
0xb9: 0x25008, // darkgray
0xbb: 0x5f90c, // padding-left
0xbc: 0x1a205, // right
0xc0: 0x40914, // scrollbar-base-color
0xc1: 0x6530e, // lightsteelblue
0xc2: 0xef05, // width
0xc5: 0x3b209, // turquoise
0xc8: 0x3ee05, // float
0xca: 0x12b0a, // ruby-align
0xcb: 0xb08, // position
0xcc: 0x7cd0a, // margin-top
0xce: 0x2cc0b, // margin-left
0xcf: 0x2eb0b, // text-shadow
0xd0: 0x2f50a, // word-break
0xd4: 0x3f90a, // whitesmoke
0xd6: 0x33d17, // text-underline-position
0xd7: 0x1bf12, // border-right-width
0xd8: 0x80009, // olivedrab
0xd9: 0x89e09, // palegreen
0xdb: 0x4e306, // import
0xdc: 0x6ca05, // marks
0xdd: 0x3bb0a, // darkviolet
0xde: 0x13, // background-position
0xe0: 0x6fc10, // mediumaquamarine
0xe1: 0x7a04, // bold
0xe2: 0x7690f, // mediumturquoise
0xe4: 0x8700d, // palegoldenrod
0xe5: 0x4f40b, // darkmagenta
0xe6: 0x15309, // rosybrown
0xe7: 0x18a11, // border-left-width
0xe8: 0x88509, // darkkhaki
0xea: 0x650e, // blanchedalmond
0xeb: 0x52007, // initial
0xec: 0x6ce1b, // scrollbar-dark-shadow-color
0xee: 0x48e0b, // saddlebrown
0xef: 0x8a70d, // paleturquoise
0xf1: 0x19b12, // border-right-color
0xf3: 0x1e305, // white
0xf7: 0x9ce19, // scrollbar-highlight-color
0xf9: 0x56d10, // layout-grid-mode
0xfc: 0x1f40c, // border-style
0xfe: 0x69b13, // list-style-position
0x100: 0x11616, // layer-background-color
0x102: 0x58210, // layout-grid-type
0x103: 0x15c0b, // border-left
0x104: 0x2db08, // overflow
0x105: 0x7a60c, // midnightblue
0x10b: 0x2840a, // text-align
0x10e: 0x21010, // border-top-style
0x110: 0x5de14, // lightgoldenrodyellow
0x114: 0x8506, // border
0x119: 0xd804, // font
0x11c: 0x7020a, // aquamarine
0x11d: 0x60e0a, // lightgreen
0x11e: 0x5ec06, // yellow
0x120: 0x97405, // speak
0x121: 0x4630b, // white-space
0x123: 0x3940d, // darkslateblue
0x125: 0x1e60e, // text-autospace
0x128: 0xf50d, // lavenderblush
0x12c: 0x6210b, // lightsalmon
0x12d: 0x51907, // inherit
0x131: 0x87c0a, // darkorchid
0x132: 0x2000a, // border-top
0x133: 0x3c80b, // play-during
0x137: 0x22010, // border-top-width
0x139: 0x48807, // orphans
0x13a: 0x41d0b, // font-family
0x13d: 0x3db0a, // dodgerblue
0x13f: 0x8d00a, // papayawhip
0x140: 0x8f305, // pause
0x143: 0x2ff0e, // cornflowerblue
0x144: 0x3c507, // display
0x146: 0x52509, // aliceblue
0x14a: 0x7208, // darkblue
0x14b: 0x3108, // behavior
0x14c: 0x3540d, // counter-reset
0x14d: 0x7960b, // greenyellow
0x14e: 0x75811, // mediumspringgreen
0x14f: 0x9150a, // powderblue
0x150: 0x53f10, // layout-grid-char
0x158: 0x81d07, // outline
0x159: 0x23c09, // burlywood
0x15b: 0xe113, // border-bottom-width
0x15c: 0x4bf04, // none
0x15e: 0x36103, // cue
0x15f: 0x4fd0c, // table-layout
0x160: 0x90a0b, // pitch-range
0x161: 0xa1907, // z-index
0x162: 0x29106, // stress
0x163: 0x80815, // background-position-x
0x165: 0x4d506, // normal
0x167: 0x72f0c, // mediumpurple
0x169: 0x5a70a, // lightcoral
0x16c: 0x6e90a, // max-height
0x16d: 0x3804, // rgba
0x16e: 0x68b10, // list-style-image
0x170: 0x26b08, // deeppink
0x173: 0x91f06, // progid
0x175: 0x75e0b, // springgreen
0x176: 0x3700b, // forestgreen
0x179: 0x7ec08, // moccasin
0x17a: 0x7780f, // mediumvioletred
0x17e: 0x9bc0b, // text-indent
0x181: 0x6ae0f, // list-style-type
0x182: 0x14c09, // gainsboro
0x183: 0x3ae0d, // darkturquoise
0x184: 0x3a10d, // darkslategray
0x189: 0x2db0a, // overflow-x
0x18b: 0x93006, // quotes
0x18c: 0x3a15, // background-attachment
0x18f: 0x19b0c, // border-right
0x191: 0x6005, // black
0x192: 0x79b0b, // yellowgreen
0x194: 0x59009, // peachpuff
0x197: 0x3f30b, // floralwhite
0x19c: 0x7210e, // darkolivegreen
0x19d: 0x5f109, // word-wrap
0x19e: 0x17911, // border-left-style
0x1a0: 0x9b30b, // speech-rate
0x1a1: 0x8370d, // outline-width
0x1a2: 0x9e70c, // unicode-bidi
0x1a3: 0x68b0a, // list-style
0x1a4: 0x90a05, // pitch
0x1a5: 0x95f15, // scrollbar-track-color
0x1a6: 0x47907, // fuchsia
0x1a8: 0x3800e, // vertical-align
0x1ad: 0x5af05, // alpha
0x1ae: 0x6f309, // max-width
0x1af: 0x9708, // richness
0x1b0: 0x3803, // rgb
0x1b1: 0x7d60d, // padding-right
0x1b2: 0x29615, // scrollbar-arrow-color
0x1b3: 0x16304, // left
0x1b5: 0x4a009, // elevation
0x1b6: 0x5630a, // line-break
0x1ba: 0x27d09, // chocolate
0x1bb: 0x9800d, // speak-numeral
0x1bd: 0x47f0b, // accelerator
0x1be: 0x67709, // limegreen
0x1c1: 0x7d08, // darkcyan
0x1c3: 0x6390c, // lightskyblue
0x1c5: 0x5c50a, // sans-serif
0x1c6: 0x850d, // border-bottom
0x1c7: 0xa, // background
0x1c8: 0xa1006, // volume
0x1ca: 0x66b0c, // writing-mode
0x1cb: 0x9e18, // scrollbar-3d-light-color
0x1cc: 0x5c006, // widows
0x1cf: 0x42809, // font-size
0x1d0: 0x15, // background-position-y
0x1d1: 0x5d509, // lightcyan
0x1d4: 0x4ec09, // indianred
0x1d7: 0x1de0a, // ghostwhite
0x1db: 0x78a09, // orangered
0x1dc: 0x45c0c, // antiquewhite
0x1dd: 0x4da09, // lawngreen
0x1df: 0x73b0e, // mediumseagreen
0x1e0: 0x20010, // border-top-color
0x1e2: 0xf304, // hsla
0x1e4: 0x3250e, // text-transform
0x1e6: 0x7160c, // mediumorchid
0x1e9: 0x8c709, // monospace
0x1ec: 0x94916, // scrollbar-shadow-color
0x1ed: 0x79209, // darkgreen
0x1ef: 0x25809, // cadetblue
0x1f0: 0x59806, // filter
0x1f1: 0x1ad12, // border-right-style
0x1f6: 0x8440a, // overflow-y
0x1f7: 0xd809, // font-face
0x1f8: 0x50d0c, // word-spacing
0x1fa: 0xbe13, // border-bottom-style
0x1fb: 0x4380c, // font-stretch
0x1fc: 0x7c509, // mintcream
0x1fd: 0x88d08, // ime-mode
0x1fe: 0x2730a, // chartreuse
0x1ff: 0x5ca05, // serif
}

687
vendor/github.com/tdewolff/parse/css/lex.go generated vendored Normal file
View file

@ -0,0 +1,687 @@
// Package css is a CSS3 lexer and parser following the specifications at http://www.w3.org/TR/css-syntax-3/.
package css
// TODO: \uFFFD replacement character for NULL bytes in strings for example, or atleast don't end the string early
import (
"bytes"
"io"
"strconv"
"github.com/tdewolff/buffer"
"github.com/tdewolff/parse"
)
// TokenType determines the type of token, eg. a number or a semicolon.
type TokenType uint32
// TokenType values.
const (
ErrorToken TokenType = iota // extra token when errors occur
IdentToken
FunctionToken // rgb( rgba( ...
AtKeywordToken // @abc
HashToken // #abc
StringToken
BadStringToken
URLToken
BadURLToken
DelimToken // any unmatched character
NumberToken // 5
PercentageToken // 5%
DimensionToken // 5em
UnicodeRangeToken // U+554A
IncludeMatchToken // ~=
DashMatchToken // |=
PrefixMatchToken // ^=
SuffixMatchToken // $=
SubstringMatchToken // *=
ColumnToken // ||
WhitespaceToken // space \t \r \n \f
CDOToken // <!--
CDCToken // -->
ColonToken // :
SemicolonToken // ;
CommaToken // ,
LeftBracketToken // [
RightBracketToken // ]
LeftParenthesisToken // (
RightParenthesisToken // )
LeftBraceToken // {
RightBraceToken // }
CommentToken // extra token for comments
EmptyToken
)
// String returns the string representation of a TokenType.
func (tt TokenType) String() string {
switch tt {
case ErrorToken:
return "Error"
case IdentToken:
return "Ident"
case FunctionToken:
return "Function"
case AtKeywordToken:
return "AtKeyword"
case HashToken:
return "Hash"
case StringToken:
return "String"
case BadStringToken:
return "BadString"
case URLToken:
return "URL"
case BadURLToken:
return "BadURL"
case DelimToken:
return "Delim"
case NumberToken:
return "Number"
case PercentageToken:
return "Percentage"
case DimensionToken:
return "Dimension"
case UnicodeRangeToken:
return "UnicodeRange"
case IncludeMatchToken:
return "IncludeMatch"
case DashMatchToken:
return "DashMatch"
case PrefixMatchToken:
return "PrefixMatch"
case SuffixMatchToken:
return "SuffixMatch"
case SubstringMatchToken:
return "SubstringMatch"
case ColumnToken:
return "Column"
case WhitespaceToken:
return "Whitespace"
case CDOToken:
return "CDO"
case CDCToken:
return "CDC"
case ColonToken:
return "Colon"
case SemicolonToken:
return "Semicolon"
case CommaToken:
return "Comma"
case LeftBracketToken:
return "LeftBracket"
case RightBracketToken:
return "RightBracket"
case LeftParenthesisToken:
return "LeftParenthesis"
case RightParenthesisToken:
return "RightParenthesis"
case LeftBraceToken:
return "LeftBrace"
case RightBraceToken:
return "RightBrace"
case CommentToken:
return "Comment"
case EmptyToken:
return "Empty"
}
return "Invalid(" + strconv.Itoa(int(tt)) + ")"
}
////////////////////////////////////////////////////////////////
// Lexer is the state for the lexer.
type Lexer struct {
r *buffer.Lexer
}
// NewLexer returns a new Lexer for a given io.Reader.
func NewLexer(r io.Reader) *Lexer {
return &Lexer{
buffer.NewLexer(r),
}
}
// Err returns the error encountered during lexing, this is often io.EOF but also other errors can be returned.
func (l Lexer) Err() error {
return l.r.Err()
}
// Free frees up bytes of length n from previously shifted tokens.
func (l *Lexer) Free(n int) {
l.r.Free(n)
}
// Next returns the next Token. It returns ErrorToken when an error was encountered. Using Err() one can retrieve the error message.
func (l *Lexer) Next() (TokenType, []byte) {
switch l.r.Peek(0) {
case ' ', '\t', '\n', '\r', '\f':
l.r.Move(1)
for l.consumeWhitespace() {
}
return WhitespaceToken, l.r.Shift()
case ':':
l.r.Move(1)
return ColonToken, l.r.Shift()
case ';':
l.r.Move(1)
return SemicolonToken, l.r.Shift()
case ',':
l.r.Move(1)
return CommaToken, l.r.Shift()
case '(', ')', '[', ']', '{', '}':
if t := l.consumeBracket(); t != ErrorToken {
return t, l.r.Shift()
}
case '#':
if l.consumeHashToken() {
return HashToken, l.r.Shift()
}
case '"', '\'':
if t := l.consumeString(); t != ErrorToken {
return t, l.r.Shift()
}
case '.', '+':
if t := l.consumeNumeric(); t != ErrorToken {
return t, l.r.Shift()
}
case '-':
if t := l.consumeNumeric(); t != ErrorToken {
return t, l.r.Shift()
} else if t := l.consumeIdentlike(); t != ErrorToken {
return t, l.r.Shift()
} else if l.consumeCDCToken() {
return CDCToken, l.r.Shift()
}
case '@':
if l.consumeAtKeywordToken() {
return AtKeywordToken, l.r.Shift()
}
case '$', '*', '^', '~':
if t := l.consumeMatch(); t != ErrorToken {
return t, l.r.Shift()
}
case '/':
if l.consumeComment() {
return CommentToken, l.r.Shift()
}
case '<':
if l.consumeCDOToken() {
return CDOToken, l.r.Shift()
}
case '\\':
if t := l.consumeIdentlike(); t != ErrorToken {
return t, l.r.Shift()
}
case 'u', 'U':
if l.consumeUnicodeRangeToken() {
return UnicodeRangeToken, l.r.Shift()
} else if t := l.consumeIdentlike(); t != ErrorToken {
return t, l.r.Shift()
}
case '|':
if t := l.consumeMatch(); t != ErrorToken {
return t, l.r.Shift()
} else if l.consumeColumnToken() {
return ColumnToken, l.r.Shift()
}
case 0:
if l.Err() != nil {
return ErrorToken, nil
}
default:
if t := l.consumeNumeric(); t != ErrorToken {
return t, l.r.Shift()
} else if t := l.consumeIdentlike(); t != ErrorToken {
return t, l.r.Shift()
}
}
// can't be rune because consumeIdentlike consumes that as an identifier
l.r.Move(1)
return DelimToken, l.r.Shift()
}
////////////////////////////////////////////////////////////////
/*
The following functions follow the railroad diagrams in http://www.w3.org/TR/css3-syntax/
*/
func (l *Lexer) consumeByte(c byte) bool {
if l.r.Peek(0) == c {
l.r.Move(1)
return true
}
return false
}
func (l *Lexer) consumeComment() bool {
if l.r.Peek(0) != '/' || l.r.Peek(1) != '*' {
return false
}
l.r.Move(2)
for {
c := l.r.Peek(0)
if c == 0 && l.r.Err() != nil {
break
} else if c == '*' && l.r.Peek(1) == '/' {
l.r.Move(2)
return true
}
l.r.Move(1)
}
return true
}
func (l *Lexer) consumeNewline() bool {
c := l.r.Peek(0)
if c == '\n' || c == '\f' {
l.r.Move(1)
return true
} else if c == '\r' {
if l.r.Peek(1) == '\n' {
l.r.Move(2)
} else {
l.r.Move(1)
}
return true
}
return false
}
func (l *Lexer) consumeWhitespace() bool {
c := l.r.Peek(0)
if c == ' ' || c == '\t' || c == '\n' || c == '\r' || c == '\f' {
l.r.Move(1)
return true
}
return false
}
func (l *Lexer) consumeDigit() bool {
c := l.r.Peek(0)
if c >= '0' && c <= '9' {
l.r.Move(1)
return true
}
return false
}
func (l *Lexer) consumeHexDigit() bool {
c := l.r.Peek(0)
if (c >= '0' && c <= '9') || (c >= 'a' && c <= 'f') || (c >= 'A' && c <= 'F') {
l.r.Move(1)
return true
}
return false
}
func (l *Lexer) consumeEscape() bool {
if l.r.Peek(0) != '\\' {
return false
}
mark := l.r.Pos()
l.r.Move(1)
if l.consumeNewline() {
l.r.Rewind(mark)
return false
} else if l.consumeHexDigit() {
for k := 1; k < 6; k++ {
if !l.consumeHexDigit() {
break
}
}
l.consumeWhitespace()
return true
} else {
c := l.r.Peek(0)
if c >= 0xC0 {
_, n := l.r.PeekRune(0)
l.r.Move(n)
return true
} else if c == 0 && l.r.Err() != nil {
return true
}
}
l.r.Move(1)
return true
}
func (l *Lexer) consumeIdentToken() bool {
mark := l.r.Pos()
if l.r.Peek(0) == '-' {
l.r.Move(1)
}
c := l.r.Peek(0)
if !((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || c == '_' || c >= 0x80) {
if c != '\\' || !l.consumeEscape() {
l.r.Rewind(mark)
return false
}
} else {
l.r.Move(1)
}
for {
c := l.r.Peek(0)
if !((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_' || c == '-' || c >= 0x80) {
if c != '\\' || !l.consumeEscape() {
break
}
} else {
l.r.Move(1)
}
}
return true
}
func (l *Lexer) consumeAtKeywordToken() bool {
// expect to be on an '@'
l.r.Move(1)
if !l.consumeIdentToken() {
l.r.Move(-1)
return false
}
return true
}
func (l *Lexer) consumeHashToken() bool {
// expect to be on a '#'
mark := l.r.Pos()
l.r.Move(1)
c := l.r.Peek(0)
if !((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_' || c == '-' || c >= 0x80) {
if c != '\\' || !l.consumeEscape() {
l.r.Rewind(mark)
return false
}
} else {
l.r.Move(1)
}
for {
c := l.r.Peek(0)
if !((c >= 'a' && c <= 'z') || (c >= 'A' && c <= 'Z') || (c >= '0' && c <= '9') || c == '_' || c == '-' || c >= 0x80) {
if c != '\\' || !l.consumeEscape() {
break
}
} else {
l.r.Move(1)
}
}
return true
}
func (l *Lexer) consumeNumberToken() bool {
mark := l.r.Pos()
c := l.r.Peek(0)
if c == '+' || c == '-' {
l.r.Move(1)
}
firstDigit := l.consumeDigit()
if firstDigit {
for l.consumeDigit() {
}
}
if l.r.Peek(0) == '.' {
l.r.Move(1)
if l.consumeDigit() {
for l.consumeDigit() {
}
} else if firstDigit {
// . could belong to the next token
l.r.Move(-1)
return true
} else {
l.r.Rewind(mark)
return false
}
} else if !firstDigit {
l.r.Rewind(mark)
return false
}
mark = l.r.Pos()
c = l.r.Peek(0)
if c == 'e' || c == 'E' {
l.r.Move(1)
c = l.r.Peek(0)
if c == '+' || c == '-' {
l.r.Move(1)
}
if !l.consumeDigit() {
// e could belong to next token
l.r.Rewind(mark)
return true
}
for l.consumeDigit() {
}
}
return true
}
func (l *Lexer) consumeUnicodeRangeToken() bool {
c := l.r.Peek(0)
if (c != 'u' && c != 'U') || l.r.Peek(1) != '+' {
return false
}
mark := l.r.Pos()
l.r.Move(2)
if l.consumeHexDigit() {
// consume up to 6 hexDigits
k := 1
for ; k < 6; k++ {
if !l.consumeHexDigit() {
break
}
}
// either a minus or a quenstion mark or the end is expected
if l.consumeByte('-') {
// consume another up to 6 hexDigits
if l.consumeHexDigit() {
for k := 1; k < 6; k++ {
if !l.consumeHexDigit() {
break
}
}
} else {
l.r.Rewind(mark)
return false
}
} else {
// could be filled up to 6 characters with question marks or else regular hexDigits
if l.consumeByte('?') {
k++
for ; k < 6; k++ {
if !l.consumeByte('?') {
l.r.Rewind(mark)
return false
}
}
}
}
} else {
// consume 6 question marks
for k := 0; k < 6; k++ {
if !l.consumeByte('?') {
l.r.Rewind(mark)
return false
}
}
}
return true
}
func (l *Lexer) consumeColumnToken() bool {
if l.r.Peek(0) == '|' && l.r.Peek(1) == '|' {
l.r.Move(2)
return true
}
return false
}
func (l *Lexer) consumeCDOToken() bool {
if l.r.Peek(0) == '<' && l.r.Peek(1) == '!' && l.r.Peek(2) == '-' && l.r.Peek(3) == '-' {
l.r.Move(4)
return true
}
return false
}
func (l *Lexer) consumeCDCToken() bool {
if l.r.Peek(0) == '-' && l.r.Peek(1) == '-' && l.r.Peek(2) == '>' {
l.r.Move(3)
return true
}
return false
}
////////////////////////////////////////////////////////////////
// consumeMatch consumes any MatchToken.
func (l *Lexer) consumeMatch() TokenType {
if l.r.Peek(1) == '=' {
switch l.r.Peek(0) {
case '~':
l.r.Move(2)
return IncludeMatchToken
case '|':
l.r.Move(2)
return DashMatchToken
case '^':
l.r.Move(2)
return PrefixMatchToken
case '$':
l.r.Move(2)
return SuffixMatchToken
case '*':
l.r.Move(2)
return SubstringMatchToken
}
}
return ErrorToken
}
// consumeBracket consumes any bracket token.
func (l *Lexer) consumeBracket() TokenType {
switch l.r.Peek(0) {
case '(':
l.r.Move(1)
return LeftParenthesisToken
case ')':
l.r.Move(1)
return RightParenthesisToken
case '[':
l.r.Move(1)
return LeftBracketToken
case ']':
l.r.Move(1)
return RightBracketToken
case '{':
l.r.Move(1)
return LeftBraceToken
case '}':
l.r.Move(1)
return RightBraceToken
}
return ErrorToken
}
// consumeNumeric consumes NumberToken, PercentageToken or DimensionToken.
func (l *Lexer) consumeNumeric() TokenType {
if l.consumeNumberToken() {
if l.consumeByte('%') {
return PercentageToken
} else if l.consumeIdentToken() {
return DimensionToken
}
return NumberToken
}
return ErrorToken
}
// consumeString consumes a string and may return BadStringToken when a newline is encountered.
func (l *Lexer) consumeString() TokenType {
// assume to be on " or '
delim := l.r.Peek(0)
l.r.Move(1)
for {
c := l.r.Peek(0)
if c == 0 && l.r.Err() != nil {
break
} else if c == '\n' || c == '\r' || c == '\f' {
l.r.Move(1)
return BadStringToken
} else if c == delim {
l.r.Move(1)
break
} else if c == '\\' {
if !l.consumeEscape() {
l.r.Move(1)
l.consumeNewline()
}
} else {
l.r.Move(1)
}
}
return StringToken
}
func (l *Lexer) consumeUnquotedURL() bool {
for {
c := l.r.Peek(0)
if c == 0 && l.r.Err() != nil || c == ')' {
break
} else if c == '"' || c == '\'' || c == '(' || c == '\\' || c == ' ' || c <= 0x1F || c == 0x7F {
if c != '\\' || !l.consumeEscape() {
return false
}
} else {
l.r.Move(1)
}
}
return true
}
// consumeRemnantsBadUrl consumes bytes of a BadUrlToken so that normal tokenization may continue.
func (l *Lexer) consumeRemnantsBadURL() {
for {
if l.consumeByte(')') || l.Err() != nil {
break
} else if !l.consumeEscape() {
l.r.Move(1)
}
}
}
// consumeIdentlike consumes IdentToken, FunctionToken or UrlToken.
func (l *Lexer) consumeIdentlike() TokenType {
if l.consumeIdentToken() {
if l.r.Peek(0) != '(' {
return IdentToken
} else if !parse.EqualFold(bytes.Replace(l.r.Lexeme(), []byte{'\\'}, nil, -1), []byte{'u', 'r', 'l'}) {
l.r.Move(1)
return FunctionToken
}
l.r.Move(1)
// consume url
for l.consumeWhitespace() {
}
if c := l.r.Peek(0); c == '"' || c == '\'' {
if l.consumeString() == BadStringToken {
l.consumeRemnantsBadURL()
return BadURLToken
}
} else if !l.consumeUnquotedURL() && !l.consumeWhitespace() {
l.consumeRemnantsBadURL()
return BadURLToken
}
for l.consumeWhitespace() {
}
if !l.consumeByte(')') && l.Err() != io.EOF {
l.consumeRemnantsBadURL()
return BadURLToken
}
return URLToken
}
return ErrorToken
}

370
vendor/github.com/tdewolff/parse/css/parse.go generated vendored Normal file
View file

@ -0,0 +1,370 @@
package css
import (
"bytes"
"errors"
"io"
"strconv"
"github.com/tdewolff/parse"
)
var wsBytes = []byte(" ")
var endBytes = []byte("}")
var emptyBytes = []byte("")
// ErrBadQualifiedRule is returned when a qualitied rule is expected, but an error or EOF happened earlier.
var ErrBadQualifiedRule = errors.New("unexpected ending in qualified rule, expected left brace token")
// ErrBadDeclaration is returned when a declaration is expected but the colon token is lacking.
var ErrBadDeclaration = errors.New("unexpected token in declaration, expected colon token")
////////////////////////////////////////////////////////////////
// GrammarType determines the type of grammar.
type GrammarType uint32
// GrammarType values.
const (
ErrorGrammar GrammarType = iota // extra token when errors occur
CommentGrammar
AtRuleGrammar
BeginAtRuleGrammar
EndAtRuleGrammar
BeginRulesetGrammar
EndRulesetGrammar
DeclarationGrammar
TokenGrammar
)
// String returns the string representation of a GrammarType.
func (tt GrammarType) String() string {
switch tt {
case ErrorGrammar:
return "Error"
case CommentGrammar:
return "Comment"
case AtRuleGrammar:
return "AtRule"
case BeginAtRuleGrammar:
return "BeginAtRule"
case EndAtRuleGrammar:
return "EndAtRule"
case BeginRulesetGrammar:
return "BeginRuleset"
case EndRulesetGrammar:
return "EndRuleset"
case DeclarationGrammar:
return "Declaration"
case TokenGrammar:
return "Token"
}
return "Invalid(" + strconv.Itoa(int(tt)) + ")"
}
////////////////////////////////////////////////////////////////
// State is the state function the parser currently is in.
type State func() GrammarType
// Token is a single TokenType and its associated data.
type Token struct {
TokenType
Data []byte
}
// Parser is the state for the parser.
type Parser struct {
l *Lexer
state []State
err error
buf []Token
level int
tt TokenType
data []byte
prevWS bool
prevEnd bool
n int
}
// NewParser returns a new CSS parser from an io.Reader. isInline specifies whether this is an inline style attribute.
func NewParser(r io.Reader, isInline bool) *Parser {
l := NewLexer(r)
p := &Parser{
l: l,
}
if isInline {
p.state = []State{p.parseDeclarationList}
} else {
p.state = []State{p.parseStylesheet}
}
return p
}
// Err returns the error encountered during parsing, this is often io.EOF but also other errors can be returned.
func (p *Parser) Err() error {
if p.err != nil {
return p.err
}
return p.l.Err()
}
// Next returns the next Grammar. It returns ErrorGrammar when an error was encountered. Using Err() one can retrieve the error message.
func (p *Parser) Next() (GrammarType, TokenType, []byte) {
p.l.Free(p.n)
p.n = 0
if p.prevEnd {
p.tt, p.data = RightBraceToken, endBytes
p.prevEnd = false
} else {
p.tt, p.data = p.popToken(true)
}
gt := p.state[len(p.state)-1]()
return gt, p.tt, p.data
}
// Values returns a slice of Tokens for the last Grammar. Only AtRuleGrammar, BeginAtRuleGrammar, BeginRulesetGrammar and Declaration will return the at-rule components, ruleset selector and declaration values respectively.
func (p *Parser) Values() []Token {
return p.buf
}
func (p *Parser) popToken(allowComment bool) (TokenType, []byte) {
p.prevWS = false
tt, data := p.l.Next()
p.n += len(data)
for tt == WhitespaceToken || tt == CommentToken {
if tt == WhitespaceToken {
p.prevWS = true
} else if allowComment && len(p.state) == 1 {
break
}
tt, data = p.l.Next()
p.n += len(data)
}
return tt, data
}
func (p *Parser) initBuf() {
p.buf = p.buf[:0]
}
func (p *Parser) pushBuf(tt TokenType, data []byte) {
p.buf = append(p.buf, Token{tt, data})
}
////////////////////////////////////////////////////////////////
func (p *Parser) parseStylesheet() GrammarType {
if p.tt == CDOToken || p.tt == CDCToken {
return TokenGrammar
} else if p.tt == AtKeywordToken {
return p.parseAtRule()
} else if p.tt == CommentToken {
return CommentGrammar
} else if p.tt == ErrorToken {
return ErrorGrammar
}
return p.parseQualifiedRule()
}
func (p *Parser) parseDeclarationList() GrammarType {
if p.tt == CommentToken {
p.tt, p.data = p.popToken(false)
}
for p.tt == SemicolonToken {
p.tt, p.data = p.popToken(false)
}
if p.tt == ErrorToken {
return ErrorGrammar
} else if p.tt == AtKeywordToken {
return p.parseAtRule()
} else if p.tt == IdentToken {
return p.parseDeclaration()
} else if p.tt == DelimToken && p.data[0] == '*' { // CSS hack
p.tt, p.data = p.popToken(false)
if p.tt == IdentToken {
p.data = append([]byte("*"), p.data...)
return p.parseDeclaration()
}
}
// parse error
for p.tt != SemicolonToken && p.tt != ErrorToken {
p.tt, p.data = p.popToken(false)
}
return p.state[len(p.state)-1]()
}
////////////////////////////////////////////////////////////////
func (p *Parser) parseAtRule() GrammarType {
p.initBuf()
parse.ToLower(p.data)
atRuleName := p.data
if len(atRuleName) > 0 && atRuleName[1] == '-' {
if i := bytes.IndexByte(atRuleName[2:], '-'); i != -1 {
atRuleName = atRuleName[i+2:] // skip vendor specific prefix
}
}
atRule := ToHash(atRuleName[1:])
first := true
skipWS := false
for {
tt, data := p.popToken(false)
if tt == LeftBraceToken && p.level == 0 {
if atRule == Font_Face || atRule == Page {
p.state = append(p.state, p.parseAtRuleDeclarationList)
} else if atRule == Document || atRule == Keyframes || atRule == Media || atRule == Supports {
p.state = append(p.state, p.parseAtRuleRuleList)
} else {
p.state = append(p.state, p.parseAtRuleUnknown)
}
return BeginAtRuleGrammar
} else if (tt == SemicolonToken || tt == RightBraceToken) && p.level == 0 || tt == ErrorToken {
p.prevEnd = (tt == RightBraceToken)
return AtRuleGrammar
} else if tt == LeftParenthesisToken || tt == LeftBraceToken || tt == LeftBracketToken || tt == FunctionToken {
p.level++
} else if tt == RightParenthesisToken || tt == RightBraceToken || tt == RightBracketToken {
p.level--
}
if first {
if tt == LeftParenthesisToken || tt == LeftBracketToken {
p.prevWS = false
}
first = false
}
if len(data) == 1 && (data[0] == ',' || data[0] == ':') {
skipWS = true
} else if p.prevWS && !skipWS && tt != RightParenthesisToken {
p.pushBuf(WhitespaceToken, wsBytes)
} else {
skipWS = false
}
if tt == LeftParenthesisToken {
skipWS = true
}
p.pushBuf(tt, data)
}
}
func (p *Parser) parseAtRuleRuleList() GrammarType {
if p.tt == RightBraceToken || p.tt == ErrorToken {
p.state = p.state[:len(p.state)-1]
return EndAtRuleGrammar
} else if p.tt == AtKeywordToken {
return p.parseAtRule()
} else {
return p.parseQualifiedRule()
}
}
func (p *Parser) parseAtRuleDeclarationList() GrammarType {
for p.tt == SemicolonToken {
p.tt, p.data = p.popToken(false)
}
if p.tt == RightBraceToken || p.tt == ErrorToken {
p.state = p.state[:len(p.state)-1]
return EndAtRuleGrammar
}
return p.parseDeclarationList()
}
func (p *Parser) parseAtRuleUnknown() GrammarType {
if p.tt == RightBraceToken && p.level == 0 || p.tt == ErrorToken {
p.state = p.state[:len(p.state)-1]
return EndAtRuleGrammar
}
if p.tt == LeftParenthesisToken || p.tt == LeftBraceToken || p.tt == LeftBracketToken || p.tt == FunctionToken {
p.level++
} else if p.tt == RightParenthesisToken || p.tt == RightBraceToken || p.tt == RightBracketToken {
p.level--
}
return TokenGrammar
}
func (p *Parser) parseQualifiedRule() GrammarType {
p.initBuf()
first := true
inAttrSel := false
skipWS := true
var tt TokenType
var data []byte
for {
if first {
tt, data = p.tt, p.data
p.tt = WhitespaceToken
p.data = emptyBytes
first = false
} else {
tt, data = p.popToken(false)
}
if tt == LeftBraceToken && p.level == 0 {
p.state = append(p.state, p.parseQualifiedRuleDeclarationList)
return BeginRulesetGrammar
} else if tt == ErrorToken {
p.err = ErrBadQualifiedRule
return ErrorGrammar
} else if tt == LeftParenthesisToken || tt == LeftBraceToken || tt == LeftBracketToken || tt == FunctionToken {
p.level++
} else if tt == RightParenthesisToken || tt == RightBraceToken || tt == RightBracketToken {
p.level--
}
if len(data) == 1 && (data[0] == ',' || data[0] == '>' || data[0] == '+' || data[0] == '~') {
skipWS = true
} else if p.prevWS && !skipWS && !inAttrSel {
p.pushBuf(WhitespaceToken, wsBytes)
} else {
skipWS = false
}
if tt == LeftBracketToken {
inAttrSel = true
} else if tt == RightBracketToken {
inAttrSel = false
}
p.pushBuf(tt, data)
}
}
func (p *Parser) parseQualifiedRuleDeclarationList() GrammarType {
for p.tt == SemicolonToken {
p.tt, p.data = p.popToken(false)
}
if p.tt == RightBraceToken || p.tt == ErrorToken {
p.state = p.state[:len(p.state)-1]
return EndRulesetGrammar
}
return p.parseDeclarationList()
}
func (p *Parser) parseDeclaration() GrammarType {
p.initBuf()
parse.ToLower(p.data)
if tt, _ := p.popToken(false); tt != ColonToken {
p.err = ErrBadDeclaration
return ErrorGrammar
}
skipWS := true
for {
tt, data := p.popToken(false)
if (tt == SemicolonToken || tt == RightBraceToken) && p.level == 0 || tt == ErrorToken {
p.prevEnd = (tt == RightBraceToken)
return DeclarationGrammar
} else if tt == LeftParenthesisToken || tt == LeftBraceToken || tt == LeftBracketToken || tt == FunctionToken {
p.level++
} else if tt == RightParenthesisToken || tt == RightBraceToken || tt == RightBracketToken {
p.level--
}
if len(data) == 1 && (data[0] == ',' || data[0] == '/' || data[0] == ':' || data[0] == '!' || data[0] == '=') {
skipWS = true
} else if p.prevWS && !skipWS {
p.pushBuf(WhitespaceToken, wsBytes)
} else {
skipWS = false
}
p.pushBuf(tt, data)
}
}

45
vendor/github.com/tdewolff/parse/css/util.go generated vendored Normal file
View file

@ -0,0 +1,45 @@
package css
import "bytes"
// IsIdent returns true if the bytes are a valid identifier.
func IsIdent(b []byte) bool {
l := NewLexer(bytes.NewBuffer(b))
l.consumeIdentToken()
return l.r.Pos() == len(b)
}
// IsURLUnquoted returns true if the bytes are a valid unquoted URL.
func IsURLUnquoted(b []byte) bool {
l := NewLexer(bytes.NewBuffer(b))
l.consumeUnquotedURL()
return l.r.Pos() == len(b)
}
// HSL2RGB converts HSL to RGB with all of range [0,1]
// from http://www.w3.org/TR/css3-color/#hsl-color
func HSL2RGB(h, s, l float64) (float64, float64, float64) {
m2 := l * (s + 1)
if l > 0.5 {
m2 = l + s - l*s
}
m1 := l*2 - m2
return hue2rgb(m1, m2, h+1.0/3.0), hue2rgb(m1, m2, h), hue2rgb(m1, m2, h-1.0/3.0)
}
func hue2rgb(m1, m2, h float64) float64 {
if h < 0.0 {
h += 1.0
}
if h > 1.0 {
h -= 1.0
}
if h*6.0 < 1.0 {
return m1 + (m2-m1)*h*6.0
} else if h*2.0 < 1.0 {
return m2
} else if h*3.0 < 2.0 {
return m1 + (m2-m1)*(2.0/3.0-h)*6.0
}
return m1
}

285
vendor/github.com/tdewolff/parse/svg/hash.go generated vendored Normal file
View file

@ -0,0 +1,285 @@
package svg
// generated by hasher -type=Hash -file=hash.go; DO NOT EDIT, except for adding more constants to the list and rerun go generate
// uses github.com/tdewolff/hasher
//go:generate hasher -type=Hash -file=hash.go
// Hash defines perfect hashes for a predefined list of strings
type Hash uint32
// Unique hash definitions to be used instead of strings
const (
A Hash = 0x101 // a
Alignment_Baseline Hash = 0x2e12 // alignment-baseline
BaseProfile Hash = 0xb // baseProfile
Baseline_Shift Hash = 0x380e // baseline-shift
Buffered_Rendering Hash = 0x5212 // buffered-rendering
Clip Hash = 0x6404 // clip
Clip_Path Hash = 0x6409 // clip-path
Clip_Rule Hash = 0x8009 // clip-rule
Color Hash = 0xd805 // color
Color_Interpolation Hash = 0xd813 // color-interpolation
Color_Interpolation_Filters Hash = 0xd81b // color-interpolation-filters
Color_Profile Hash = 0x1ea0d // color-profile
Color_Rendering Hash = 0x2110f // color-rendering
ContentScriptType Hash = 0xa011 // contentScriptType
ContentStyleType Hash = 0xb110 // contentStyleType
Cursor Hash = 0xc106 // cursor
D Hash = 0x5901 // d
Defs Hash = 0x34b04 // defs
Direction Hash = 0x2f109 // direction
Display Hash = 0x9807 // display
Dominant_Baseline Hash = 0x18511 // dominant-baseline
Enable_Background Hash = 0x8811 // enable-background
Fill Hash = 0xc904 // fill
Fill_Opacity Hash = 0x31f0c // fill-opacity
Fill_Rule Hash = 0xc909 // fill-rule
Filter Hash = 0xec06 // filter
Flood_Color Hash = 0xd20b // flood-color
Flood_Opacity Hash = 0x1010d // flood-opacity
Font Hash = 0x11004 // font
Font_Family Hash = 0x1100b // font-family
Font_Size Hash = 0x11b09 // font-size
Font_Size_Adjust Hash = 0x11b10 // font-size-adjust
Font_Stretch Hash = 0x1330c // font-stretch
Font_Style Hash = 0x13f0a // font-style
Font_Variant Hash = 0x1490c // font-variant
Font_Weight Hash = 0x1620b // font-weight
G Hash = 0x1601 // g
Glyph_Orientation_Horizontal Hash = 0x1c61c // glyph-orientation-horizontal
Glyph_Orientation_Vertical Hash = 0x161a // glyph-orientation-vertical
Height Hash = 0x6c06 // height
Image_Rendering Hash = 0x16d0f // image-rendering
Kerning Hash = 0x1af07 // kerning
Letter_Spacing Hash = 0x90e // letter-spacing
Lighting_Color Hash = 0x1e10e // lighting-color
Line Hash = 0x3c04 // line
Marker Hash = 0x17c06 // marker
Marker_End Hash = 0x17c0a // marker-end
Marker_Mid Hash = 0x1960a // marker-mid
Marker_Start Hash = 0x1a00c // marker-start
Mask Hash = 0x1ac04 // mask
Metadata Hash = 0x1b608 // metadata
Missing_Glyph Hash = 0x1be0d // missing-glyph
Opacity Hash = 0x10707 // opacity
Overflow Hash = 0x25308 // overflow
Paint_Order Hash = 0x2930b // paint-order
Path Hash = 0x6904 // path
Pattern Hash = 0x1f707 // pattern
Pointer_Events Hash = 0x1fe0e // pointer-events
Points Hash = 0x22006 // points
Polygon Hash = 0x23207 // polygon
Polyline Hash = 0x23908 // polyline
PreserveAspectRatio Hash = 0x24113 // preserveAspectRatio
Rect Hash = 0x2f304 // rect
Rx Hash = 0x4f02 // rx
Ry Hash = 0xc602 // ry
Shape_Rendering Hash = 0xf20f // shape-rendering
Solid_Color Hash = 0x20b0b // solid-color
Solid_Opacity Hash = 0x2250d // solid-opacity
Stop_Color Hash = 0x1290a // stop-color
Stop_Opacity Hash = 0x34e0c // stop-opacity
Stroke Hash = 0x26506 // stroke
Stroke_Dasharray Hash = 0x26510 // stroke-dasharray
Stroke_Dashoffset Hash = 0x27511 // stroke-dashoffset
Stroke_Linecap Hash = 0x2860e // stroke-linecap
Stroke_Linejoin Hash = 0x29e0f // stroke-linejoin
Stroke_Miterlimit Hash = 0x2ad11 // stroke-miterlimit
Stroke_Opacity Hash = 0x2be0e // stroke-opacity
Stroke_Width Hash = 0x2cc0c // stroke-width
Style Hash = 0x14405 // style
Svg Hash = 0x2d803 // svg
Switch Hash = 0x2db06 // switch
Symbol Hash = 0x2e106 // symbol
Text_Anchor Hash = 0x450b // text-anchor
Text_Decoration Hash = 0x710f // text-decoration
Text_Rendering Hash = 0x1540e // text-rendering
Type Hash = 0x10c04 // type
Unicode_Bidi Hash = 0x2e70c // unicode-bidi
Vector_Effect Hash = 0x2fa0d // vector-effect
Version Hash = 0x30707 // version
ViewBox Hash = 0x30e07 // viewBox
Viewport_Fill Hash = 0x3160d // viewport-fill
Viewport_Fill_Opacity Hash = 0x31615 // viewport-fill-opacity
Visibility Hash = 0x32b0a // visibility
White_Space Hash = 0x25a0b // white-space
Width Hash = 0x2d305 // width
Word_Spacing Hash = 0x3350c // word-spacing
Writing_Mode Hash = 0x3410c // writing-mode
X Hash = 0x4701 // x
X1 Hash = 0x5002 // x1
X2 Hash = 0x31402 // x2
Xml_Space Hash = 0x35a09 // xml:space
Y Hash = 0x1801 // y
Y1 Hash = 0x9e02 // y1
Y2 Hash = 0xc702 // y2
)
// String returns the hash' name.
func (i Hash) String() string {
start := uint32(i >> 8)
n := uint32(i & 0xff)
if start+n > uint32(len(_Hash_text)) {
return ""
}
return _Hash_text[start : start+n]
}
// ToHash returns the hash whose name is s. It returns zero if there is no
// such hash. It is case sensitive.
func ToHash(s []byte) Hash {
if len(s) == 0 || len(s) > _Hash_maxLen {
return 0
}
h := uint32(_Hash_hash0)
for i := 0; i < len(s); i++ {
h ^= uint32(s[i])
h *= 16777619
}
if i := _Hash_table[h&uint32(len(_Hash_table)-1)]; int(i&0xff) == len(s) {
t := _Hash_text[i>>8 : i>>8+i&0xff]
for i := 0; i < len(s); i++ {
if t[i] != s[i] {
goto NEXT
}
}
return i
}
NEXT:
if i := _Hash_table[(h>>16)&uint32(len(_Hash_table)-1)]; int(i&0xff) == len(s) {
t := _Hash_text[i>>8 : i>>8+i&0xff]
for i := 0; i < len(s); i++ {
if t[i] != s[i] {
return 0
}
}
return i
}
return 0
}
const _Hash_hash0 = 0xf7ffa4d4
const _Hash_maxLen = 28
const _Hash_text = "baseProfiletter-spacinglyph-orientation-verticalignment-base" +
"line-shiftext-anchorx1buffered-renderingclip-patheightext-de" +
"corationclip-rulenable-backgroundisplay1contentScriptTypecon" +
"tentStyleTypecursory2fill-ruleflood-color-interpolation-filt" +
"ershape-renderingflood-opacitypefont-familyfont-size-adjusto" +
"p-colorfont-stretchfont-stylefont-variantext-renderingfont-w" +
"eightimage-renderingmarker-endominant-baselinemarker-midmark" +
"er-startmaskerningmetadatamissing-glyph-orientation-horizont" +
"alighting-color-profilepatternpointer-eventsolid-color-rende" +
"ringpointsolid-opacitypolygonpolylinepreserveAspectRatioverf" +
"lowhite-spacestroke-dasharraystroke-dashoffsetstroke-linecap" +
"aint-orderstroke-linejoinstroke-miterlimitstroke-opacitystro" +
"ke-widthsvgswitchsymbolunicode-bidirectionvector-effectversi" +
"onviewBox2viewport-fill-opacityvisibilityword-spacingwriting" +
"-modefstop-opacityxml:space"
var _Hash_table = [1 << 7]Hash{
0x0: 0x18511, // dominant-baseline
0x1: 0x1b608, // metadata
0x2: 0x11b10, // font-size-adjust
0x3: 0x11004, // font
0x4: 0x2d305, // width
0x5: 0x34b04, // defs
0x6: 0x450b, // text-anchor
0x7: 0x2fa0d, // vector-effect
0x8: 0x6904, // path
0x9: 0x13f0a, // font-style
0xa: 0x2d803, // svg
0xb: 0x2ad11, // stroke-miterlimit
0xc: 0x1c61c, // glyph-orientation-horizontal
0xd: 0x17c06, // marker
0xe: 0xa011, // contentScriptType
0xf: 0x1490c, // font-variant
0x10: 0x2e106, // symbol
0x11: 0x1fe0e, // pointer-events
0x12: 0x9e02, // y1
0x13: 0x1be0d, // missing-glyph
0x14: 0x1010d, // flood-opacity
0x16: 0x3410c, // writing-mode
0x18: 0x3350c, // word-spacing
0x1b: 0xc106, // cursor
0x1d: 0x4f02, // rx
0x1e: 0x34e0c, // stop-opacity
0x21: 0xec06, // filter
0x22: 0x2f304, // rect
0x25: 0x2e70c, // unicode-bidi
0x26: 0x8811, // enable-background
0x27: 0x6c06, // height
0x28: 0x26510, // stroke-dasharray
0x2a: 0xd805, // color
0x2c: 0x31402, // x2
0x2e: 0x17c0a, // marker-end
0x2f: 0x5002, // x1
0x30: 0x23908, // polyline
0x31: 0xc602, // ry
0x32: 0x25308, // overflow
0x33: 0x1ac04, // mask
0x34: 0x3160d, // viewport-fill
0x35: 0x31f0c, // fill-opacity
0x36: 0x5212, // buffered-rendering
0x38: 0xd81b, // color-interpolation-filters
0x39: 0x1540e, // text-rendering
0x3a: 0x23207, // polygon
0x3b: 0x710f, // text-decoration
0x3c: 0x10c04, // type
0x3d: 0x11b09, // font-size
0x3e: 0x1a00c, // marker-start
0x3f: 0x1ea0d, // color-profile
0x40: 0x22006, // points
0x41: 0x1330c, // font-stretch
0x42: 0x1290a, // stop-color
0x43: 0x9807, // display
0x44: 0x4701, // x
0x45: 0x20b0b, // solid-color
0x46: 0x3c04, // line
0x47: 0x6409, // clip-path
0x48: 0x30707, // version
0x49: 0x1601, // g
0x4b: 0x8009, // clip-rule
0x4d: 0x2db06, // switch
0x4f: 0x10707, // opacity
0x50: 0xd813, // color-interpolation
0x51: 0x2cc0c, // stroke-width
0x52: 0x6404, // clip
0x53: 0x2110f, // color-rendering
0x54: 0x26506, // stroke
0x55: 0x2f109, // direction
0x56: 0x1e10e, // lighting-color
0x57: 0x1801, // y
0x59: 0x14405, // style
0x5a: 0x380e, // baseline-shift
0x5c: 0xc904, // fill
0x5d: 0xf20f, // shape-rendering
0x5f: 0x2860e, // stroke-linecap
0x60: 0x27511, // stroke-dashoffset
0x61: 0x2930b, // paint-order
0x63: 0x2250d, // solid-opacity
0x64: 0x2e12, // alignment-baseline
0x65: 0x25a0b, // white-space
0x66: 0x1f707, // pattern
0x67: 0x2be0e, // stroke-opacity
0x68: 0x32b0a, // visibility
0x6a: 0x30e07, // viewBox
0x6b: 0x90e, // letter-spacing
0x6c: 0x1100b, // font-family
0x6d: 0xb110, // contentStyleType
0x6f: 0x101, // a
0x70: 0x5901, // d
0x71: 0x29e0f, // stroke-linejoin
0x72: 0x31615, // viewport-fill-opacity
0x73: 0xb, // baseProfile
0x74: 0x16d0f, // image-rendering
0x75: 0x24113, // preserveAspectRatio
0x76: 0xd20b, // flood-color
0x77: 0x1960a, // marker-mid
0x78: 0x1af07, // kerning
0x7a: 0x1620b, // font-weight
0x7b: 0x161a, // glyph-orientation-vertical
0x7d: 0x35a09, // xml:space
0x7e: 0xc909, // fill-rule
0x7f: 0xc702, // y2
}

160
vendor/github.com/tdewolff/parse/util.go generated vendored Normal file
View file

@ -0,0 +1,160 @@
package parse
// Copy returns a copy of the given byte slice.
func Copy(src []byte) (dst []byte) {
dst = make([]byte, len(src))
copy(dst, src)
return
}
// ToLower converts all characters in the byte slice from A-Z to a-z.
func ToLower(src []byte) []byte {
for i, c := range src {
if c >= 'A' && c <= 'Z' {
src[i] = c + ('a' - 'A')
}
}
return src
}
// Equal returns true when s matches the target.
func Equal(s, target []byte) bool {
if len(s) != len(target) {
return false
}
for i, c := range target {
if s[i] != c {
return false
}
}
return true
}
// EqualFold returns true when s matches case-insensitively the targetLower (which must be lowercase).
func EqualFold(s, targetLower []byte) bool {
if len(s) != len(targetLower) {
return false
}
for i, c := range targetLower {
if s[i] != c && (c < 'A' && c > 'Z' || s[i]+('a'-'A') != c) {
return false
}
}
return true
}
var whitespaceTable = [256]bool{
// ASCII
false, false, false, false, false, false, false, false,
false, true, true, false, true, true, false, false, // tab, new line, form feed, carriage return
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
true, false, false, false, false, false, false, false, // space
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
// non-ASCII
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
false, false, false, false, false, false, false, false,
}
// IsWhitespace returns true for space, \n, \r, \t, \f.
func IsWhitespace(c byte) bool {
return whitespaceTable[c]
}
// IsAllWhitespace returns true when the entire byte slice consists of space, \n, \r, \t, \f.
func IsAllWhitespace(b []byte) bool {
for _, c := range b {
if !IsWhitespace(c) {
return false
}
}
return true
}
// TrimWhitespace removes any leading and trailing whitespace characters.
func TrimWhitespace(b []byte) []byte {
n := len(b)
start := n
for i := 0; i < n; i++ {
if !IsWhitespace(b[i]) {
start = i
break
}
}
end := n
for i := n - 1; i >= start; i-- {
if !IsWhitespace(b[i]) {
end = i + 1
break
}
}
return b[start:end]
}
// ReplaceMultipleWhitespace replaces character series of space, \n, \t, \f, \r into a single space or newline (when the serie contained a \n or \r).
func ReplaceMultipleWhitespace(b []byte) []byte {
j := 0
prevWS := false
hasNewline := false
for i, c := range b {
if IsWhitespace(c) {
prevWS = true
if c == '\n' || c == '\r' {
hasNewline = true
}
} else {
if prevWS {
prevWS = false
if hasNewline {
hasNewline = false
b[j] = '\n'
} else {
b[j] = ' '
}
j++
}
b[j] = b[i]
j++
}
}
if prevWS {
if hasNewline {
b[j] = '\n'
} else {
b[j] = ' '
}
j++
}
return b[:j]
}

101
vendor/github.com/tdewolff/parse/xml/README.md generated vendored Normal file
View file

@ -0,0 +1,101 @@
# XML [![GoDoc](http://godoc.org/github.com/tdewolff/parse/xml?status.svg)](http://godoc.org/github.com/tdewolff/parse/xml) [![GoCover](http://gocover.io/_badge/github.com/tdewolff/parse/xml)](http://gocover.io/github.com/tdewolff/parse/xml)
This package is an XML lexer written in [Go][1]. It follows the specification at [Extensible Markup Language (XML) 1.0 (Fifth Edition)](http://www.w3.org/TR/REC-xml/). The lexer takes an io.Reader and converts it into tokens until the EOF.
## Installation
Run the following command
go get github.com/tdewolff/parse/xml
or add the following import and run project with `go get`
import "github.com/tdewolff/parse/xml"
## Lexer
### Usage
The following initializes a new Lexer with io.Reader `r`:
``` go
l := xml.NewLexer(r)
```
To tokenize until EOF an error, use:
``` go
for {
tt, data := l.Next()
switch tt {
case xml.ErrorToken:
// error or EOF set in l.Err()
return
case xml.StartTagToken:
// ...
for {
ttAttr, dataAttr := l.Next()
if ttAttr != xml.AttributeToken {
// handle StartTagCloseToken/StartTagCloseVoidToken/StartTagClosePIToken
break
}
// ...
}
case xml.EndTagToken:
// ...
}
}
```
All tokens:
``` go
ErrorToken TokenType = iota // extra token when errors occur
CommentToken
CDATAToken
StartTagToken
StartTagCloseToken
StartTagCloseVoidToken
StartTagClosePIToken
EndTagToken
AttributeToken
TextToken
```
### Examples
``` go
package main
import (
"os"
"github.com/tdewolff/parse/xml"
)
// Tokenize XML from stdin.
func main() {
l := xml.NewLexer(os.Stdin)
for {
tt, data := l.Next()
switch tt {
case xml.ErrorToken:
if l.Err() != io.EOF {
fmt.Println("Error on line", l.Line(), ":", l.Err())
}
return
case xml.StartTagToken:
fmt.Println("Tag", string(data))
for {
ttAttr, dataAttr := l.Next()
if ttAttr != xml.AttributeToken {
break
}
key := dataAttr
val := l.AttrVal()
fmt.Println("Attribute", string(key), "=", string(val))
}
// ...
}
}
}
```
## License
Released under the [MIT license](https://github.com/tdewolff/parse/blob/master/LICENSE.md).
[1]: http://golang.org/ "Go Language"

338
vendor/github.com/tdewolff/parse/xml/lex.go generated vendored Normal file
View file

@ -0,0 +1,338 @@
// Package xml is an XML1.0 lexer following the specifications at http://www.w3.org/TR/xml/.
package xml
import (
"io"
"strconv"
"github.com/tdewolff/buffer"
)
////////////////////////////////////////////////////////////////
// TokenType determines the type of token, eg. a number or a semicolon.
type TokenType uint32
// TokenType values.
const (
ErrorToken TokenType = iota // extra token when errors occur
CommentToken
DOCTYPEToken
CDATAToken
StartTagToken
StartTagPIToken
StartTagCloseToken
StartTagCloseVoidToken
StartTagClosePIToken
EndTagToken
AttributeToken
TextToken
)
// String returns the string representation of a TokenType.
func (tt TokenType) String() string {
switch tt {
case ErrorToken:
return "Error"
case CommentToken:
return "Comment"
case DOCTYPEToken:
return "DOCTYPE"
case CDATAToken:
return "CDATA"
case StartTagToken:
return "StartTag"
case StartTagPIToken:
return "StartTagPI"
case StartTagCloseToken:
return "StartTagClose"
case StartTagCloseVoidToken:
return "StartTagCloseVoid"
case StartTagClosePIToken:
return "StartTagClosePI"
case EndTagToken:
return "EndTag"
case AttributeToken:
return "Attribute"
case TextToken:
return "Text"
}
return "Invalid(" + strconv.Itoa(int(tt)) + ")"
}
////////////////////////////////////////////////////////////////
// Lexer is the state for the lexer.
type Lexer struct {
r *buffer.Lexer
inTag bool
text []byte
attrVal []byte
}
// NewLexer returns a new Lexer for a given io.Reader.
func NewLexer(r io.Reader) *Lexer {
return &Lexer{
r: buffer.NewLexer(r),
}
}
// Err returns the error encountered during lexing, this is often io.EOF but also other errors can be returned.
func (l *Lexer) Err() error {
return l.r.Err()
}
// Free frees up bytes of length n from previously shifted tokens.
func (l *Lexer) Free(n int) {
l.r.Free(n)
}
// Next returns the next Token. It returns ErrorToken when an error was encountered. Using Err() one can retrieve the error message.
func (l *Lexer) Next() (TokenType, []byte) {
l.text = nil
var c byte
if l.inTag {
l.attrVal = nil
for { // before attribute name state
if c = l.r.Peek(0); c == ' ' || c == '\t' || c == '\n' || c == '\r' {
l.r.Move(1)
continue
}
break
}
if c == 0 {
return ErrorToken, nil
} else if c != '>' && (c != '/' && c != '?' || l.r.Peek(1) != '>') {
return AttributeToken, l.shiftAttribute()
}
start := l.r.Pos()
l.inTag = false
if c == '/' {
l.r.Move(2)
l.text = l.r.Lexeme()[start:]
return StartTagCloseVoidToken, l.r.Shift()
} else if c == '?' {
l.r.Move(2)
l.text = l.r.Lexeme()[start:]
return StartTagClosePIToken, l.r.Shift()
} else {
l.r.Move(1)
l.text = l.r.Lexeme()[start:]
return StartTagCloseToken, l.r.Shift()
}
}
for {
c = l.r.Peek(0)
if c == '<' {
if l.r.Pos() > 0 {
return TextToken, l.r.Shift()
}
c = l.r.Peek(1)
if c == '/' {
l.r.Move(2)
return EndTagToken, l.shiftEndTag()
} else if c == '!' {
l.r.Move(2)
if l.at('-', '-') {
l.r.Move(2)
return CommentToken, l.shiftCommentText()
} else if l.at('[', 'C', 'D', 'A', 'T', 'A', '[') {
l.r.Move(7)
return CDATAToken, l.shiftCDATAText()
} else if l.at('D', 'O', 'C', 'T', 'Y', 'P', 'E') {
l.r.Move(8)
return DOCTYPEToken, l.shiftDOCTYPEText()
}
l.r.Move(-2)
} else if c == '?' {
l.r.Move(2)
l.inTag = true
return StartTagPIToken, l.shiftStartTag()
}
l.r.Move(1)
l.inTag = true
return StartTagToken, l.shiftStartTag()
} else if c == 0 {
if l.r.Pos() > 0 {
return TextToken, l.r.Shift()
}
return ErrorToken, nil
}
l.r.Move(1)
}
}
// Text returns the textual representation of a token. This excludes delimiters and additional leading/trailing characters.
func (l *Lexer) Text() []byte {
return l.text
}
// AttrVal returns the attribute value when an AttributeToken was returned from Next.
func (l *Lexer) AttrVal() []byte {
return l.attrVal
}
////////////////////////////////////////////////////////////////
// The following functions follow the specifications at http://www.w3.org/html/wg/drafts/html/master/syntax.html
func (l *Lexer) shiftDOCTYPEText() []byte {
inString := false
inBrackets := false
for {
c := l.r.Peek(0)
if c == '"' {
inString = !inString
} else if (c == '[' || c == ']') && !inString {
inBrackets = (c == '[')
} else if c == '>' && !inString && !inBrackets {
l.text = l.r.Lexeme()[9:]
l.r.Move(1)
return l.r.Shift()
} else if c == 0 {
l.text = l.r.Lexeme()[9:]
return l.r.Shift()
}
l.r.Move(1)
}
}
func (l *Lexer) shiftCDATAText() []byte {
for {
c := l.r.Peek(0)
if c == ']' && l.r.Peek(1) == ']' && l.r.Peek(2) == '>' {
l.text = l.r.Lexeme()[9:]
l.r.Move(3)
return l.r.Shift()
} else if c == 0 {
l.text = l.r.Lexeme()[9:]
return l.r.Shift()
}
l.r.Move(1)
}
}
func (l *Lexer) shiftCommentText() []byte {
for {
c := l.r.Peek(0)
if c == '-' && l.r.Peek(1) == '-' && l.r.Peek(2) == '>' {
l.text = l.r.Lexeme()[4:]
l.r.Move(3)
return l.r.Shift()
} else if c == 0 {
return l.r.Shift()
}
l.r.Move(1)
}
}
func (l *Lexer) shiftStartTag() []byte {
nameStart := l.r.Pos()
for {
if c := l.r.Peek(0); c == ' ' || c == '>' || (c == '/' || c == '?') && l.r.Peek(1) == '>' || c == '\t' || c == '\n' || c == '\r' || c == 0 {
break
}
l.r.Move(1)
}
l.text = l.r.Lexeme()[nameStart:]
return l.r.Shift()
}
func (l *Lexer) shiftAttribute() []byte {
nameStart := l.r.Pos()
var c byte
for { // attribute name state
if c = l.r.Peek(0); c == ' ' || c == '=' || c == '>' || (c == '/' || c == '?') && l.r.Peek(1) == '>' || c == '\t' || c == '\n' || c == '\r' || c == 0 {
break
}
l.r.Move(1)
}
nameEnd := l.r.Pos()
for { // after attribute name state
if c = l.r.Peek(0); c == ' ' || c == '\t' || c == '\n' || c == '\r' {
l.r.Move(1)
continue
}
break
}
if c == '=' {
l.r.Move(1)
for { // before attribute value state
if c = l.r.Peek(0); c == ' ' || c == '\t' || c == '\n' || c == '\r' {
l.r.Move(1)
continue
}
break
}
attrPos := l.r.Pos()
delim := c
if delim == '"' || delim == '\'' { // attribute value single- and double-quoted state
l.r.Move(1)
for {
c = l.r.Peek(0)
if c == delim {
l.r.Move(1)
break
} else if c == 0 {
break
}
l.r.Move(1)
if c == '\t' || c == '\n' || c == '\r' {
l.r.Lexeme()[l.r.Pos()-1] = ' '
}
}
} else { // attribute value unquoted state
for {
if c = l.r.Peek(0); c == ' ' || c == '>' || (c == '/' || c == '?') && l.r.Peek(1) == '>' || c == '\t' || c == '\n' || c == '\r' || c == 0 {
break
}
l.r.Move(1)
}
}
l.attrVal = l.r.Lexeme()[attrPos:]
} else {
l.r.Rewind(nameEnd)
l.attrVal = nil
}
l.text = l.r.Lexeme()[nameStart:nameEnd]
return l.r.Shift()
}
func (l *Lexer) shiftEndTag() []byte {
for {
c := l.r.Peek(0)
if c == '>' {
l.text = l.r.Lexeme()[2:]
l.r.Move(1)
break
} else if c == 0 {
l.text = l.r.Lexeme()[2:]
break
}
l.r.Move(1)
}
end := len(l.text)
for end > 0 {
if c := l.text[end-1]; c == ' ' || c == '\t' || c == '\n' || c == '\r' {
end--
continue
}
break
}
l.text = l.text[:end]
return l.r.Shift()
}
////////////////////////////////////////////////////////////////
func (l *Lexer) at(b ...byte) bool {
for i, c := range b {
if l.r.Peek(i) != c {
return false
}
}
return true
}

108
vendor/github.com/tdewolff/parse/xml/util.go generated vendored Normal file
View file

@ -0,0 +1,108 @@
package xml
import "github.com/tdewolff/parse"
var (
ltEntityBytes = []byte("&lt;")
ampEntityBytes = []byte("&amp;")
singleQuoteEntityBytes = []byte("&#39;")
doubleQuoteEntityBytes = []byte("&#34;")
)
// EscapeAttrVal returns the escape attribute value bytes without quotes.
func EscapeAttrVal(buf *[]byte, b []byte) []byte {
singles := 0
doubles := 0
for i, c := range b {
if c == '&' {
if quote, n := parse.QuoteEntity(b[i:]); n > 0 {
if quote == '"' {
doubles++
} else {
singles++
}
}
} else if c == '"' {
doubles++
} else if c == '\'' {
singles++
}
}
n := len(b) + 2
var quote byte
var escapedQuote []byte
if doubles > singles {
n += singles * 4
quote = '\''
escapedQuote = singleQuoteEntityBytes
} else {
n += doubles * 4
quote = '"'
escapedQuote = doubleQuoteEntityBytes
}
if n > cap(*buf) {
*buf = make([]byte, 0, n) // maximum size, not actual size
}
t := (*buf)[:n] // maximum size, not actual size
t[0] = quote
j := 1
start := 0
for i, c := range b {
if c == '&' {
if entityQuote, n := parse.QuoteEntity(b[i:]); n > 0 {
j += copy(t[j:], b[start:i])
if entityQuote != quote {
t[j] = entityQuote
j++
} else {
j += copy(t[j:], escapedQuote)
}
start = i + n
}
} else if c == quote {
j += copy(t[j:], b[start:i])
j += copy(t[j:], escapedQuote)
start = i + 1
}
}
j += copy(t[j:], b[start:])
t[j] = quote
return t[:j+1]
}
// EscapeCDATAVal returns the escaped text bytes.
func EscapeCDATAVal(buf *[]byte, b []byte) ([]byte, bool) {
n := 0
for _, c := range b {
if c == '<' || c == '&' {
if c == '<' {
n += 3 // &lt;
} else {
n += 4 // &amp;
}
if n > len("<![CDATA[]]>") {
return b, false
}
}
}
if len(b)+n > cap(*buf) {
*buf = make([]byte, 0, len(b)+n)
}
t := (*buf)[:len(b)+n]
j := 0
start := 0
for i, c := range b {
if c == '<' {
j += copy(t[j:], b[start:i])
j += copy(t[j:], ltEntityBytes)
start = i + 1
} else if c == '&' {
j += copy(t[j:], b[start:i])
j += copy(t[j:], ampEntityBytes)
start = i + 1
}
}
j += copy(t[j:], b[start:])
return t[:j], true
}

22
vendor/github.com/tdewolff/strconv/LICENSE.md generated vendored Normal file
View file

@ -0,0 +1,22 @@
Copyright (c) 2015 Taco de Wolff
Permission is hereby granted, free of charge, to any person
obtaining a copy of this software and associated documentation
files (the "Software"), to deal in the Software without
restriction, including without limitation the rights to use,
copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the
Software is furnished to do so, subject to the following
conditions:
The above copyright notice and this permission notice shall be
included in all copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT
HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY,
WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
OTHER DEALINGS IN THE SOFTWARE.

10
vendor/github.com/tdewolff/strconv/README.md generated vendored Normal file
View file

@ -0,0 +1,10 @@
# Strconv [![GoDoc](http://godoc.org/github.com/tdewolff/strconv?status.svg)](http://godoc.org/github.com/tdewolff/strconv)
This package contains string conversion function and is written in [Go][1]. It is much alike the standard library's strconv package, but it is specifically tailored for the performance needs within the minify package.
For example, the floating-point to string conversion function is approximately twice as fast as the standard library, but it is not as precise.
## License
Released under the [MIT license](LICENSE.md).
[1]: http://golang.org/ "Go Language"

251
vendor/github.com/tdewolff/strconv/float.go generated vendored Normal file
View file

@ -0,0 +1,251 @@
package strconv
import "math"
var float64pow10 = []float64{
1e0, 1e1, 1e2, 1e3, 1e4, 1e5, 1e6, 1e7, 1e8, 1e9,
1e10, 1e11, 1e12, 1e13, 1e14, 1e15, 1e16, 1e17, 1e18, 1e19,
1e20, 1e21, 1e22,
}
// Float parses a byte-slice and returns the float it represents.
// If an invalid character is encountered, it will stop there.
func ParseFloat(b []byte) (float64, int) {
i := 0
neg := false
if i < len(b) && (b[i] == '+' || b[i] == '-') {
neg = b[i] == '-'
i++
}
dot := -1
trunk := -1
n := uint64(0)
for ; i < len(b); i++ {
c := b[i]
if c >= '0' && c <= '9' {
if trunk == -1 {
if n > math.MaxUint64/10 {
trunk = i
} else {
n *= 10
n += uint64(c - '0')
}
}
} else if dot == -1 && c == '.' {
dot = i
} else {
break
}
}
f := float64(n)
if neg {
f = -f
}
mantExp := int64(0)
if dot != -1 {
if trunk == -1 {
trunk = i
}
mantExp = int64(trunk - dot - 1)
} else if trunk != -1 {
mantExp = int64(trunk - i)
}
expExp := int64(0)
if i < len(b) && (b[i] == 'e' || b[i] == 'E') {
i++
if e, expLen := ParseInt(b[i:]); expLen > 0 {
expExp = e
i += expLen
}
}
exp := expExp - mantExp
// copied from strconv/atof.go
if exp == 0 {
return f, i
} else if exp > 0 && exp <= 15+22 { // int * 10^k
// If exponent is big but number of digits is not,
// can move a few zeros into the integer part.
if exp > 22 {
f *= float64pow10[exp-22]
exp = 22
}
if f <= 1e15 && f >= -1e15 {
return f * float64pow10[exp], i
}
} else if exp < 0 && exp >= -22 { // int / 10^k
return f / float64pow10[-exp], i
}
f *= math.Pow10(int(-mantExp))
return f * math.Pow10(int(expExp)), i
}
const log2 = 0.301029995
const int64maxlen = 18
func float64exp(f float64) int {
exp2 := 0
if f != 0.0 {
x := math.Float64bits(f)
exp2 = int(x>>(64-11-1))&0x7FF - 1023 + 1
}
exp10 := float64(exp2) * log2
if exp10 < 0 {
exp10 -= 1.0
}
return int(exp10)
}
func AppendFloat(b []byte, f float64, prec int) ([]byte, bool) {
if math.IsNaN(f) || math.IsInf(f, 0) {
return b, false
} else if prec >= int64maxlen {
return b, false
}
neg := false
if f < 0.0 {
f = -f
neg = true
}
if prec == -1 {
prec = int64maxlen - 1
}
prec -= float64exp(f) // number of digits in front of the dot
f *= math.Pow10(prec)
// calculate mantissa and exponent
mant := int64(f)
mantLen := LenInt(mant)
mantExp := mantLen - prec - 1
if mant == 0 {
return append(b, '0'), true
}
// expLen is zero for positive exponents, because positive exponents are determined later on in the big conversion loop
exp := 0
expLen := 0
if mantExp > 0 {
// positive exponent is determined in the loop below
// but if we initially decreased the exponent to fit in an integer, we can't set the new exponent in the loop alone,
// since the number of zeros at the end determines the positive exponent in the loop, and we just artificially lost zeros
if prec < 0 {
exp = mantExp
}
expLen = 1 + LenInt(int64(exp)) // e + digits
} else if mantExp < -3 {
exp = mantExp
expLen = 2 + LenInt(int64(exp)) // e + minus + digits
} else if mantExp < -1 {
mantLen += -mantExp - 1 // extra zero between dot and first digit
}
// reserve space in b
i := len(b)
maxLen := 1 + mantLen + expLen // dot + mantissa digits + exponent
if neg {
maxLen++
}
if i+maxLen > cap(b) {
b = append(b, make([]byte, maxLen)...)
} else {
b = b[:i+maxLen]
}
// write to string representation
if neg {
b[i] = '-'
i++
}
// big conversion loop, start at the end and move to the front
// initially print trailing zeros and remove them later on
// for example if the first non-zero digit is three positions in front of the dot, it will overwrite the zeros with a positive exponent
zero := true
last := i + mantLen // right-most position of digit that is non-zero + dot
dot := last - prec - exp // position of dot
j := last
for mant > 0 {
if j == dot {
b[j] = '.'
j--
}
newMant := mant / 10
digit := mant - 10*newMant
if zero && digit > 0 {
// first non-zero digit, if we are still behind the dot we can trim the end to this position
// otherwise trim to the dot (including the dot)
if j > dot {
i = j + 1
// decrease negative exponent further to get rid of dot
if exp < 0 {
newExp := exp - (j - dot)
// getting rid of the dot shouldn't lower the exponent to more digits (e.g. -9 -> -10)
if LenInt(int64(newExp)) == LenInt(int64(exp)) {
exp = newExp
dot = j
j--
i--
}
}
} else {
i = dot
}
last = j
zero = false
}
b[j] = '0' + byte(digit)
j--
mant = newMant
}
if j > dot {
// extra zeros behind the dot
for j > dot {
b[j] = '0'
j--
}
b[j] = '.'
} else if last+3 < dot {
// add positive exponent because we have 3 or more zeros in front of the dot
i = last + 1
exp = dot - last - 1
} else if j == dot {
// handle 0.1
b[j] = '.'
}
// exponent
if exp != 0 {
if exp == 1 {
b[i] = '0'
i++
} else if exp == 2 {
b[i] = '0'
b[i+1] = '0'
i += 2
} else {
b[i] = 'e'
i++
if exp < 0 {
b[i] = '-'
i++
exp = -exp
}
i += LenInt(int64(exp))
j := i
for exp > 0 {
newExp := exp / 10
digit := exp - 10*newExp
j--
b[j] = '0' + byte(digit)
exp = newExp
}
}
}
return b[:i], true
}

78
vendor/github.com/tdewolff/strconv/int.go generated vendored Normal file
View file

@ -0,0 +1,78 @@
package strconv
import "math"
// Int parses a byte-slice and returns the integer it represents.
// If an invalid character is encountered, it will stop there.
func ParseInt(b []byte) (int64, int) {
i := 0
neg := false
if len(b) > 0 && (b[0] == '+' || b[0] == '-') {
neg = b[0] == '-'
i++
}
n := uint64(0)
for i < len(b) {
c := b[i]
if n > math.MaxUint64/10 {
return 0, 0
} else if c >= '0' && c <= '9' {
n *= 10
n += uint64(c - '0')
} else {
break
}
i++
}
if !neg && n > uint64(math.MaxInt64) || n > uint64(math.MaxInt64)+1 {
return 0, 0
} else if neg {
return -int64(n), i
}
return int64(n), i
}
func LenInt(i int64) int {
if i < 0 {
i = -i
}
switch {
case i < 10:
return 1
case i < 100:
return 2
case i < 1000:
return 3
case i < 10000:
return 4
case i < 100000:
return 5
case i < 1000000:
return 6
case i < 10000000:
return 7
case i < 100000000:
return 8
case i < 1000000000:
return 9
case i < 10000000000:
return 10
case i < 100000000000:
return 11
case i < 1000000000000:
return 12
case i < 10000000000000:
return 13
case i < 100000000000000:
return 14
case i < 1000000000000000:
return 15
case i < 10000000000000000:
return 16
case i < 100000000000000000:
return 17
case i < 1000000000000000000:
return 18
}
return 19
}

27
vendor/golang.org/x/image/LICENSE generated vendored Normal file
View file

@ -0,0 +1,27 @@
Copyright (c) 2009 The Go Authors. All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are
met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following disclaimer
in the documentation and/or other materials provided with the
distribution.
* Neither the name of Google Inc. nor the names of its
contributors may be used to endorse or promote products derived from
this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

22
vendor/golang.org/x/image/PATENTS generated vendored Normal file
View file

@ -0,0 +1,22 @@
Additional IP Rights Grant (Patents)
"This implementation" means the copyrightable works distributed by
Google as part of the Go project.
Google hereby grants to You a perpetual, worldwide, non-exclusive,
no-charge, royalty-free, irrevocable (except as stated in this section)
patent license to make, have made, use, offer to sell, sell, import,
transfer and otherwise run, modify and propagate the contents of this
implementation of Go, where such license applies only to those patent
claims, both currently owned or controlled by Google and acquired in
the future, licensable by Google that are necessarily infringed by this
implementation of Go. This grant does not include claims that would be
infringed only as a consequence of further modification of this
implementation. If you or your agent or exclusive licensee institute or
order or agree to the institution of patent litigation against any
entity (including a cross-claim or counterclaim in a lawsuit) alleging
that this implementation of Go or any code incorporated within this
implementation of Go constitutes direct or contributory patent
infringement, or inducement of patent infringement, then any patent
rights granted to you under this License for this implementation of Go
shall terminate as of the date such litigation is filed.

281
vendor/golang.org/x/image/font/font.go generated vendored Normal file
View file

@ -0,0 +1,281 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package font defines an interface for font faces, for drawing text on an
// image.
//
// Other packages provide font face implementations. For example, a truetype
// package would provide one based on .ttf font files.
package font
import (
"image"
"image/draw"
"io"
"unicode/utf8"
"golang.org/x/image/math/fixed"
)
// TODO: who is responsible for caches (glyph images, glyph indices, kerns)?
// The Drawer or the Face?
// Face is a font face. Its glyphs are often derived from a font file, such as
// "Comic_Sans_MS.ttf", but a face has a specific size, style, weight and
// hinting. For example, the 12pt and 18pt versions of Comic Sans are two
// different faces, even if derived from the same font file.
//
// A Face is not safe for concurrent use by multiple goroutines, as its methods
// may re-use implementation-specific caches and mask image buffers.
//
// To create a Face, look to other packages that implement specific font file
// formats.
type Face interface {
io.Closer
// Glyph returns the draw.DrawMask parameters (dr, mask, maskp) to draw r's
// glyph at the sub-pixel destination location dot, and that glyph's
// advance width.
//
// It returns !ok if the face does not contain a glyph for r.
//
// The contents of the mask image returned by one Glyph call may change
// after the next Glyph call. Callers that want to cache the mask must make
// a copy.
Glyph(dot fixed.Point26_6, r rune) (
dr image.Rectangle, mask image.Image, maskp image.Point, advance fixed.Int26_6, ok bool)
// GlyphBounds returns the bounding box of r's glyph, drawn at a dot equal
// to the origin, and that glyph's advance width.
//
// It returns !ok if the face does not contain a glyph for r.
//
// The glyph's ascent and descent equal -bounds.Min.Y and +bounds.Max.Y. A
// visual depiction of what these metrics are is at
// https://developer.apple.com/library/mac/documentation/TextFonts/Conceptual/CocoaTextArchitecture/Art/glyph_metrics_2x.png
GlyphBounds(r rune) (bounds fixed.Rectangle26_6, advance fixed.Int26_6, ok bool)
// GlyphAdvance returns the advance width of r's glyph.
//
// It returns !ok if the face does not contain a glyph for r.
GlyphAdvance(r rune) (advance fixed.Int26_6, ok bool)
// Kern returns the horizontal adjustment for the kerning pair (r0, r1). A
// positive kern means to move the glyphs further apart.
Kern(r0, r1 rune) fixed.Int26_6
// Metrics returns the metrics for this Face.
Metrics() Metrics
// TODO: ColoredGlyph for various emoji?
// TODO: Ligatures? Shaping?
}
// Metrics holds the metrics for a Face. A visual depiction is at
// https://developer.apple.com/library/mac/documentation/TextFonts/Conceptual/CocoaTextArchitecture/Art/glyph_metrics_2x.png
type Metrics struct {
// Height is the recommended amount of vertical space between two lines of
// text.
Height fixed.Int26_6
// Ascent is the distance from the top of a line to its baseline.
Ascent fixed.Int26_6
// Descent is the distance from the bottom of a line to its baseline. The
// value is typically positive, even though a descender goes below the
// baseline.
Descent fixed.Int26_6
}
// Drawer draws text on a destination image.
//
// A Drawer is not safe for concurrent use by multiple goroutines, since its
// Face is not.
type Drawer struct {
// Dst is the destination image.
Dst draw.Image
// Src is the source image.
Src image.Image
// Face provides the glyph mask images.
Face Face
// Dot is the baseline location to draw the next glyph. The majority of the
// affected pixels will be above and to the right of the dot, but some may
// be below or to the left. For example, drawing a 'j' in an italic face
// may affect pixels below and to the left of the dot.
Dot fixed.Point26_6
// TODO: Clip image.Image?
// TODO: SrcP image.Point for Src images other than *image.Uniform? How
// does it get updated during DrawString?
}
// TODO: should DrawString return the last rune drawn, so the next DrawString
// call can kern beforehand? Or should that be the responsibility of the caller
// if they really want to do that, since they have to explicitly shift d.Dot
// anyway? What if ligatures span more than two runes? What if grapheme
// clusters span multiple runes?
//
// TODO: do we assume that the input is in any particular Unicode Normalization
// Form?
//
// TODO: have DrawRunes(s []rune)? DrawRuneReader(io.RuneReader)?? If we take
// io.RuneReader, we can't assume that we can rewind the stream.
//
// TODO: how does this work with line breaking: drawing text up until a
// vertical line? Should DrawString return the number of runes drawn?
// DrawBytes draws s at the dot and advances the dot's location.
func (d *Drawer) DrawBytes(s []byte) {
prevC := rune(-1)
for len(s) > 0 {
c, size := utf8.DecodeRune(s)
s = s[size:]
if prevC >= 0 {
d.Dot.X += d.Face.Kern(prevC, c)
}
dr, mask, maskp, advance, ok := d.Face.Glyph(d.Dot, c)
if !ok {
// TODO: is falling back on the U+FFFD glyph the responsibility of
// the Drawer or the Face?
// TODO: set prevC = '\ufffd'?
continue
}
draw.DrawMask(d.Dst, dr, d.Src, image.Point{}, mask, maskp, draw.Over)
d.Dot.X += advance
prevC = c
}
}
// DrawString draws s at the dot and advances the dot's location.
func (d *Drawer) DrawString(s string) {
prevC := rune(-1)
for _, c := range s {
if prevC >= 0 {
d.Dot.X += d.Face.Kern(prevC, c)
}
dr, mask, maskp, advance, ok := d.Face.Glyph(d.Dot, c)
if !ok {
// TODO: is falling back on the U+FFFD glyph the responsibility of
// the Drawer or the Face?
// TODO: set prevC = '\ufffd'?
continue
}
draw.DrawMask(d.Dst, dr, d.Src, image.Point{}, mask, maskp, draw.Over)
d.Dot.X += advance
prevC = c
}
}
// MeasureBytes returns how far dot would advance by drawing s.
func (d *Drawer) MeasureBytes(s []byte) (advance fixed.Int26_6) {
return MeasureBytes(d.Face, s)
}
// MeasureString returns how far dot would advance by drawing s.
func (d *Drawer) MeasureString(s string) (advance fixed.Int26_6) {
return MeasureString(d.Face, s)
}
// MeasureBytes returns how far dot would advance by drawing s with f.
func MeasureBytes(f Face, s []byte) (advance fixed.Int26_6) {
prevC := rune(-1)
for len(s) > 0 {
c, size := utf8.DecodeRune(s)
s = s[size:]
if prevC >= 0 {
advance += f.Kern(prevC, c)
}
a, ok := f.GlyphAdvance(c)
if !ok {
// TODO: is falling back on the U+FFFD glyph the responsibility of
// the Drawer or the Face?
// TODO: set prevC = '\ufffd'?
continue
}
advance += a
prevC = c
}
return advance
}
// MeasureString returns how far dot would advance by drawing s with f.
func MeasureString(f Face, s string) (advance fixed.Int26_6) {
prevC := rune(-1)
for _, c := range s {
if prevC >= 0 {
advance += f.Kern(prevC, c)
}
a, ok := f.GlyphAdvance(c)
if !ok {
// TODO: is falling back on the U+FFFD glyph the responsibility of
// the Drawer or the Face?
// TODO: set prevC = '\ufffd'?
continue
}
advance += a
prevC = c
}
return advance
}
// Hinting selects how to quantize a vector font's glyph nodes.
//
// Not all fonts support hinting.
type Hinting int
const (
HintingNone Hinting = iota
HintingVertical
HintingFull
)
// Stretch selects a normal, condensed, or expanded face.
//
// Not all fonts support stretches.
type Stretch int
const (
StretchUltraCondensed Stretch = -4
StretchExtraCondensed Stretch = -3
StretchCondensed Stretch = -2
StretchSemiCondensed Stretch = -1
StretchNormal Stretch = +0
StretchSemiExpanded Stretch = +1
StretchExpanded Stretch = +2
StretchExtraExpanded Stretch = +3
StretchUltraExpanded Stretch = +4
)
// Style selects a normal, italic, or oblique face.
//
// Not all fonts support styles.
type Style int
const (
StyleNormal Style = iota
StyleItalic
StyleOblique
)
// Weight selects a normal, light or bold face.
//
// Not all fonts support weights.
//
// The named Weight constants (e.g. WeightBold) correspond to CSS' common
// weight names (e.g. "Bold"), but the numerical values differ, so that in Go,
// the zero value means to use a normal weight. For the CSS names and values,
// see https://developer.mozilla.org/en/docs/Web/CSS/font-weight
type Weight int
const (
WeightThin Weight = -3 // CSS font-weight value 100.
WeightExtraLight Weight = -2 // CSS font-weight value 200.
WeightLight Weight = -1 // CSS font-weight value 300.
WeightNormal Weight = +0 // CSS font-weight value 400.
WeightMedium Weight = +1 // CSS font-weight value 500.
WeightSemiBold Weight = +2 // CSS font-weight value 600.
WeightBold Weight = +3 // CSS font-weight value 700.
WeightExtraBold Weight = +4 // CSS font-weight value 800.
WeightBlack Weight = +5 // CSS font-weight value 900.
)

202
vendor/golang.org/x/image/math/fixed/fixed.go generated vendored Normal file
View file

@ -0,0 +1,202 @@
// Copyright 2015 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package fixed implements fixed-point integer types.
package fixed
import (
"fmt"
)
// TODO: implement fmt.Formatter for %f and %g.
// I returns the integer value i as an Int26_6.
//
// For example, passing the integer value 2 yields Int26_6(128).
func I(i int) Int26_6 {
return Int26_6(i << 6)
}
// Int26_6 is a signed 26.6 fixed-point number.
//
// The integer part ranges from -33554432 to 33554431, inclusive. The
// fractional part has 6 bits of precision.
//
// For example, the number one-and-a-quarter is Int26_6(1<<6 + 1<<4).
type Int26_6 int32
// String returns a human-readable representation of a 26.6 fixed-point number.
//
// For example, the number one-and-a-quarter becomes "1:16".
func (x Int26_6) String() string {
const shift, mask = 6, 1<<6 - 1
if x >= 0 {
return fmt.Sprintf("%d:%02d", int32(x>>shift), int32(x&mask))
}
x = -x
if x >= 0 {
return fmt.Sprintf("-%d:%02d", int32(x>>shift), int32(x&mask))
}
return "-33554432:00" // The minimum value is -(1<<25).
}
// Floor returns the greatest integer value less than or equal to x.
//
// Its return type is int, not Int26_6.
func (x Int26_6) Floor() int { return int((x + 0x00) >> 6) }
// Round returns the nearest integer value to x. Ties are rounded up.
//
// Its return type is int, not Int26_6.
func (x Int26_6) Round() int { return int((x + 0x20) >> 6) }
// Ceil returns the least integer value greater than or equal to x.
//
// Its return type is int, not Int26_6.
func (x Int26_6) Ceil() int { return int((x + 0x3f) >> 6) }
// Int52_12 is a signed 52.12 fixed-point number.
//
// The integer part ranges from -2251799813685248 to 2251799813685247,
// inclusive. The fractional part has 12 bits of precision.
//
// For example, the number one-and-a-quarter is Int52_12(1<<12 + 1<<10).
type Int52_12 int64
// String returns a human-readable representation of a 52.12 fixed-point
// number.
//
// For example, the number one-and-a-quarter becomes "1:1024".
func (x Int52_12) String() string {
const shift, mask = 12, 1<<12 - 1
if x >= 0 {
return fmt.Sprintf("%d:%04d", int64(x>>shift), int64(x&mask))
}
x = -x
if x >= 0 {
return fmt.Sprintf("-%d:%04d", int64(x>>shift), int64(x&mask))
}
return "-2251799813685248:0000" // The minimum value is -(1<<51).
}
// Floor returns the greatest integer value less than or equal to x.
//
// Its return type is int, not Int52_12.
func (x Int52_12) Floor() int { return int((x + 0x000) >> 12) }
// Round returns the nearest integer value to x. Ties are rounded up.
//
// Its return type is int, not Int52_12.
func (x Int52_12) Round() int { return int((x + 0x800) >> 12) }
// Ceil returns the least integer value greater than or equal to x.
//
// Its return type is int, not Int52_12.
func (x Int52_12) Ceil() int { return int((x + 0xfff) >> 12) }
// P returns the integer values x and y as a Point26_6.
//
// For example, passing the integer values (2, -3) yields Point26_6{128, -192}.
func P(x, y int) Point26_6 {
return Point26_6{Int26_6(x << 6), Int26_6(y << 6)}
}
// Point26_6 is a 26.6 fixed-point coordinate pair.
//
// It is analogous to the image.Point type in the standard library.
type Point26_6 struct {
X, Y Int26_6
}
// Add returns the vector p+q.
func (p Point26_6) Add(q Point26_6) Point26_6 {
return Point26_6{p.X + q.X, p.Y + q.Y}
}
// Sub returns the vector p-q.
func (p Point26_6) Sub(q Point26_6) Point26_6 {
return Point26_6{p.X - q.X, p.Y - q.Y}
}
// Mul returns the vector p*k.
func (p Point26_6) Mul(k Int26_6) Point26_6 {
return Point26_6{p.X * k / 64, p.Y * k / 64}
}
// Div returns the vector p/k.
func (p Point26_6) Div(k Int26_6) Point26_6 {
return Point26_6{p.X * 64 / k, p.Y * 64 / k}
}
// Point52_12 is a 52.12 fixed-point coordinate pair.
//
// It is analogous to the image.Point type in the standard library.
type Point52_12 struct {
X, Y Int52_12
}
// Add returns the vector p+q.
func (p Point52_12) Add(q Point52_12) Point52_12 {
return Point52_12{p.X + q.X, p.Y + q.Y}
}
// Sub returns the vector p-q.
func (p Point52_12) Sub(q Point52_12) Point52_12 {
return Point52_12{p.X - q.X, p.Y - q.Y}
}
// Mul returns the vector p*k.
func (p Point52_12) Mul(k Int52_12) Point52_12 {
return Point52_12{p.X * k / 4096, p.Y * k / 4096}
}
// Div returns the vector p/k.
func (p Point52_12) Div(k Int52_12) Point52_12 {
return Point52_12{p.X * 4096 / k, p.Y * 4096 / k}
}
// R returns the integer values minX, minY, maxX, maxY as a Rectangle26_6.
//
// For example, passing the integer values (0, 1, 2, 3) yields
// Rectangle26_6{Point26_6{0, 64}, Point26_6{128, 192}}.
//
// Like the image.Rect function in the standard library, the returned rectangle
// has minimum and maximum coordinates swapped if necessary so that it is
// well-formed.
func R(minX, minY, maxX, maxY int) Rectangle26_6 {
if minX > maxX {
minX, maxX = maxX, minX
}
if minY > maxY {
minY, maxY = maxY, minY
}
return Rectangle26_6{
Point26_6{
Int26_6(minX << 6),
Int26_6(minY << 6),
},
Point26_6{
Int26_6(maxX << 6),
Int26_6(maxY << 6),
},
}
}
// Rectangle26_6 is a 26.6 fixed-point coordinate rectangle. The Min bound is
// inclusive and the Max bound is exclusive. It is well-formed if Min.X <=
// Max.X and likewise for Y.
//
// It is analogous to the image.Rectangle type in the standard library.
type Rectangle26_6 struct {
Min, Max Point26_6
}
// Rectangle52_12 is a 52.12 fixed-point coordinate rectangle. The Min bound is
// inclusive and the Max bound is exclusive. It is well-formed if Min.X <=
// Max.X and likewise for Y.
//
// It is analogous to the image.Rectangle type in the standard library.
type Rectangle52_12 struct {
Min, Max Point52_12
}

188
vendor/gopkg.in/yaml.v2/LICENSE generated vendored Normal file
View file

@ -0,0 +1,188 @@
Copyright (c) 2011-2014 - Canonical Inc.
This software is licensed under the LGPLv3, included below.
As a special exception to the GNU Lesser General Public License version 3
("LGPL3"), the copyright holders of this Library give you permission to
convey to a third party a Combined Work that links statically or dynamically
to this Library without providing any Minimal Corresponding Source or
Minimal Application Code as set out in 4d or providing the installation
information set out in section 4e, provided that you comply with the other
provisions of LGPL3 and provided that you meet, for the Application the
terms and conditions of the license(s) which apply to the Application.
Except as stated in this special exception, the provisions of LGPL3 will
continue to comply in full to this Library. If you modify this Library, you
may apply this exception to your version of this Library, but you are not
obliged to do so. If you do not wish to do so, delete this exception
statement from your version. This exception does not (and cannot) modify any
license terms which apply to the Application, with which you must still
comply.
GNU LESSER GENERAL PUBLIC LICENSE
Version 3, 29 June 2007
Copyright (C) 2007 Free Software Foundation, Inc. <http://fsf.org/>
Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
This version of the GNU Lesser General Public License incorporates
the terms and conditions of version 3 of the GNU General Public
License, supplemented by the additional permissions listed below.
0. Additional Definitions.
As used herein, "this License" refers to version 3 of the GNU Lesser
General Public License, and the "GNU GPL" refers to version 3 of the GNU
General Public License.
"The Library" refers to a covered work governed by this License,
other than an Application or a Combined Work as defined below.
An "Application" is any work that makes use of an interface provided
by the Library, but which is not otherwise based on the Library.
Defining a subclass of a class defined by the Library is deemed a mode
of using an interface provided by the Library.
A "Combined Work" is a work produced by combining or linking an
Application with the Library. The particular version of the Library
with which the Combined Work was made is also called the "Linked
Version".
The "Minimal Corresponding Source" for a Combined Work means the
Corresponding Source for the Combined Work, excluding any source code
for portions of the Combined Work that, considered in isolation, are
based on the Application, and not on the Linked Version.
The "Corresponding Application Code" for a Combined Work means the
object code and/or source code for the Application, including any data
and utility programs needed for reproducing the Combined Work from the
Application, but excluding the System Libraries of the Combined Work.
1. Exception to Section 3 of the GNU GPL.
You may convey a covered work under sections 3 and 4 of this License
without being bound by section 3 of the GNU GPL.
2. Conveying Modified Versions.
If you modify a copy of the Library, and, in your modifications, a
facility refers to a function or data to be supplied by an Application
that uses the facility (other than as an argument passed when the
facility is invoked), then you may convey a copy of the modified
version:
a) under this License, provided that you make a good faith effort to
ensure that, in the event an Application does not supply the
function or data, the facility still operates, and performs
whatever part of its purpose remains meaningful, or
b) under the GNU GPL, with none of the additional permissions of
this License applicable to that copy.
3. Object Code Incorporating Material from Library Header Files.
The object code form of an Application may incorporate material from
a header file that is part of the Library. You may convey such object
code under terms of your choice, provided that, if the incorporated
material is not limited to numerical parameters, data structure
layouts and accessors, or small macros, inline functions and templates
(ten or fewer lines in length), you do both of the following:
a) Give prominent notice with each copy of the object code that the
Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the object code with a copy of the GNU GPL and this license
document.
4. Combined Works.
You may convey a Combined Work under terms of your choice that,
taken together, effectively do not restrict modification of the
portions of the Library contained in the Combined Work and reverse
engineering for debugging such modifications, if you also do each of
the following:
a) Give prominent notice with each copy of the Combined Work that
the Library is used in it and that the Library and its use are
covered by this License.
b) Accompany the Combined Work with a copy of the GNU GPL and this license
document.
c) For a Combined Work that displays copyright notices during
execution, include the copyright notice for the Library among
these notices, as well as a reference directing the user to the
copies of the GNU GPL and this license document.
d) Do one of the following:
0) Convey the Minimal Corresponding Source under the terms of this
License, and the Corresponding Application Code in a form
suitable for, and under terms that permit, the user to
recombine or relink the Application with a modified version of
the Linked Version to produce a modified Combined Work, in the
manner specified by section 6 of the GNU GPL for conveying
Corresponding Source.
1) Use a suitable shared library mechanism for linking with the
Library. A suitable mechanism is one that (a) uses at run time
a copy of the Library already present on the user's computer
system, and (b) will operate properly with a modified version
of the Library that is interface-compatible with the Linked
Version.
e) Provide Installation Information, but only if you would otherwise
be required to provide such information under section 6 of the
GNU GPL, and only to the extent that such information is
necessary to install and execute a modified version of the
Combined Work produced by recombining or relinking the
Application with a modified version of the Linked Version. (If
you use option 4d0, the Installation Information must accompany
the Minimal Corresponding Source and Corresponding Application
Code. If you use option 4d1, you must provide the Installation
Information in the manner specified by section 6 of the GNU GPL
for conveying Corresponding Source.)
5. Combined Libraries.
You may place library facilities that are a work based on the
Library side by side in a single library together with other library
facilities that are not Applications and are not covered by this
License, and convey such a combined library under terms of your
choice, if you do both of the following:
a) Accompany the combined library with a copy of the same work based
on the Library, uncombined with any other library facilities,
conveyed under the terms of this License.
b) Give prominent notice with the combined library that part of it
is a work based on the Library, and explaining where to find the
accompanying uncombined form of the same work.
6. Revised Versions of the GNU Lesser General Public License.
The Free Software Foundation may publish revised and/or new versions
of the GNU Lesser General Public License from time to time. Such new
versions will be similar in spirit to the present version, but may
differ in detail to address new problems or concerns.
Each version is given a distinguishing version number. If the
Library as you received it specifies that a certain numbered version
of the GNU Lesser General Public License "or any later version"
applies to it, you have the option of following the terms and
conditions either of that published version or of any later version
published by the Free Software Foundation. If the Library as you
received it does not specify a version number of the GNU Lesser
General Public License, you may choose any version of the GNU Lesser
General Public License ever published by the Free Software Foundation.
If the Library as you received it specifies that a proxy can decide
whether future versions of the GNU Lesser General Public License shall
apply, that proxy's public statement of acceptance of any version is
permanent authorization for you to choose that version for the
Library.

31
vendor/gopkg.in/yaml.v2/LICENSE.libyaml generated vendored Normal file
View file

@ -0,0 +1,31 @@
The following files were ported to Go from C files of libyaml, and thus
are still covered by their original copyright and license:
apic.go
emitterc.go
parserc.go
readerc.go
scannerc.go
writerc.go
yamlh.go
yamlprivateh.go
Copyright (c) 2006 Kirill Simonov
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

131
vendor/gopkg.in/yaml.v2/README.md generated vendored Normal file
View file

@ -0,0 +1,131 @@
# YAML support for the Go language
Introduction
------------
The yaml package enables Go programs to comfortably encode and decode YAML
values. It was developed within [Canonical](https://www.canonical.com) as
part of the [juju](https://juju.ubuntu.com) project, and is based on a
pure Go port of the well-known [libyaml](http://pyyaml.org/wiki/LibYAML)
C library to parse and generate YAML data quickly and reliably.
Compatibility
-------------
The yaml package supports most of YAML 1.1 and 1.2, including support for
anchors, tags, map merging, etc. Multi-document unmarshalling is not yet
implemented, and base-60 floats from YAML 1.1 are purposefully not
supported since they're a poor design and are gone in YAML 1.2.
Installation and usage
----------------------
The import path for the package is *gopkg.in/yaml.v2*.
To install it, run:
go get gopkg.in/yaml.v2
API documentation
-----------------
If opened in a browser, the import path itself leads to the API documentation:
* [https://gopkg.in/yaml.v2](https://gopkg.in/yaml.v2)
API stability
-------------
The package API for yaml v2 will remain stable as described in [gopkg.in](https://gopkg.in).
License
-------
The yaml package is licensed under the LGPL with an exception that allows it to be linked statically. Please see the LICENSE file for details.
Example
-------
```Go
package main
import (
"fmt"
"log"
"gopkg.in/yaml.v2"
)
var data = `
a: Easy!
b:
c: 2
d: [3, 4]
`
type T struct {
A string
B struct {
RenamedC int `yaml:"c"`
D []int `yaml:",flow"`
}
}
func main() {
t := T{}
err := yaml.Unmarshal([]byte(data), &t)
if err != nil {
log.Fatalf("error: %v", err)
}
fmt.Printf("--- t:\n%v\n\n", t)
d, err := yaml.Marshal(&t)
if err != nil {
log.Fatalf("error: %v", err)
}
fmt.Printf("--- t dump:\n%s\n\n", string(d))
m := make(map[interface{}]interface{})
err = yaml.Unmarshal([]byte(data), &m)
if err != nil {
log.Fatalf("error: %v", err)
}
fmt.Printf("--- m:\n%v\n\n", m)
d, err = yaml.Marshal(&m)
if err != nil {
log.Fatalf("error: %v", err)
}
fmt.Printf("--- m dump:\n%s\n\n", string(d))
}
```
This example will generate the following output:
```
--- t:
{Easy! {2 [3 4]}}
--- t dump:
a: Easy!
b:
c: 2
d: [3, 4]
--- m:
map[a:Easy! b:map[c:2 d:[3 4]]]
--- m dump:
a: Easy!
b:
c: 2
d:
- 3
- 4
```

742
vendor/gopkg.in/yaml.v2/apic.go generated vendored Normal file
View file

@ -0,0 +1,742 @@
package yaml
import (
"io"
"os"
)
func yaml_insert_token(parser *yaml_parser_t, pos int, token *yaml_token_t) {
//fmt.Println("yaml_insert_token", "pos:", pos, "typ:", token.typ, "head:", parser.tokens_head, "len:", len(parser.tokens))
// Check if we can move the queue at the beginning of the buffer.
if parser.tokens_head > 0 && len(parser.tokens) == cap(parser.tokens) {
if parser.tokens_head != len(parser.tokens) {
copy(parser.tokens, parser.tokens[parser.tokens_head:])
}
parser.tokens = parser.tokens[:len(parser.tokens)-parser.tokens_head]
parser.tokens_head = 0
}
parser.tokens = append(parser.tokens, *token)
if pos < 0 {
return
}
copy(parser.tokens[parser.tokens_head+pos+1:], parser.tokens[parser.tokens_head+pos:])
parser.tokens[parser.tokens_head+pos] = *token
}
// Create a new parser object.
func yaml_parser_initialize(parser *yaml_parser_t) bool {
*parser = yaml_parser_t{
raw_buffer: make([]byte, 0, input_raw_buffer_size),
buffer: make([]byte, 0, input_buffer_size),
}
return true
}
// Destroy a parser object.
func yaml_parser_delete(parser *yaml_parser_t) {
*parser = yaml_parser_t{}
}
// String read handler.
func yaml_string_read_handler(parser *yaml_parser_t, buffer []byte) (n int, err error) {
if parser.input_pos == len(parser.input) {
return 0, io.EOF
}
n = copy(buffer, parser.input[parser.input_pos:])
parser.input_pos += n
return n, nil
}
// File read handler.
func yaml_file_read_handler(parser *yaml_parser_t, buffer []byte) (n int, err error) {
return parser.input_file.Read(buffer)
}
// Set a string input.
func yaml_parser_set_input_string(parser *yaml_parser_t, input []byte) {
if parser.read_handler != nil {
panic("must set the input source only once")
}
parser.read_handler = yaml_string_read_handler
parser.input = input
parser.input_pos = 0
}
// Set a file input.
func yaml_parser_set_input_file(parser *yaml_parser_t, file *os.File) {
if parser.read_handler != nil {
panic("must set the input source only once")
}
parser.read_handler = yaml_file_read_handler
parser.input_file = file
}
// Set the source encoding.
func yaml_parser_set_encoding(parser *yaml_parser_t, encoding yaml_encoding_t) {
if parser.encoding != yaml_ANY_ENCODING {
panic("must set the encoding only once")
}
parser.encoding = encoding
}
// Create a new emitter object.
func yaml_emitter_initialize(emitter *yaml_emitter_t) bool {
*emitter = yaml_emitter_t{
buffer: make([]byte, output_buffer_size),
raw_buffer: make([]byte, 0, output_raw_buffer_size),
states: make([]yaml_emitter_state_t, 0, initial_stack_size),
events: make([]yaml_event_t, 0, initial_queue_size),
}
return true
}
// Destroy an emitter object.
func yaml_emitter_delete(emitter *yaml_emitter_t) {
*emitter = yaml_emitter_t{}
}
// String write handler.
func yaml_string_write_handler(emitter *yaml_emitter_t, buffer []byte) error {
*emitter.output_buffer = append(*emitter.output_buffer, buffer...)
return nil
}
// File write handler.
func yaml_file_write_handler(emitter *yaml_emitter_t, buffer []byte) error {
_, err := emitter.output_file.Write(buffer)
return err
}
// Set a string output.
func yaml_emitter_set_output_string(emitter *yaml_emitter_t, output_buffer *[]byte) {
if emitter.write_handler != nil {
panic("must set the output target only once")
}
emitter.write_handler = yaml_string_write_handler
emitter.output_buffer = output_buffer
}
// Set a file output.
func yaml_emitter_set_output_file(emitter *yaml_emitter_t, file io.Writer) {
if emitter.write_handler != nil {
panic("must set the output target only once")
}
emitter.write_handler = yaml_file_write_handler
emitter.output_file = file
}
// Set the output encoding.
func yaml_emitter_set_encoding(emitter *yaml_emitter_t, encoding yaml_encoding_t) {
if emitter.encoding != yaml_ANY_ENCODING {
panic("must set the output encoding only once")
}
emitter.encoding = encoding
}
// Set the canonical output style.
func yaml_emitter_set_canonical(emitter *yaml_emitter_t, canonical bool) {
emitter.canonical = canonical
}
//// Set the indentation increment.
func yaml_emitter_set_indent(emitter *yaml_emitter_t, indent int) {
if indent < 2 || indent > 9 {
indent = 2
}
emitter.best_indent = indent
}
// Set the preferred line width.
func yaml_emitter_set_width(emitter *yaml_emitter_t, width int) {
if width < 0 {
width = -1
}
emitter.best_width = width
}
// Set if unescaped non-ASCII characters are allowed.
func yaml_emitter_set_unicode(emitter *yaml_emitter_t, unicode bool) {
emitter.unicode = unicode
}
// Set the preferred line break character.
func yaml_emitter_set_break(emitter *yaml_emitter_t, line_break yaml_break_t) {
emitter.line_break = line_break
}
///*
// * Destroy a token object.
// */
//
//YAML_DECLARE(void)
//yaml_token_delete(yaml_token_t *token)
//{
// assert(token); // Non-NULL token object expected.
//
// switch (token.type)
// {
// case YAML_TAG_DIRECTIVE_TOKEN:
// yaml_free(token.data.tag_directive.handle);
// yaml_free(token.data.tag_directive.prefix);
// break;
//
// case YAML_ALIAS_TOKEN:
// yaml_free(token.data.alias.value);
// break;
//
// case YAML_ANCHOR_TOKEN:
// yaml_free(token.data.anchor.value);
// break;
//
// case YAML_TAG_TOKEN:
// yaml_free(token.data.tag.handle);
// yaml_free(token.data.tag.suffix);
// break;
//
// case YAML_SCALAR_TOKEN:
// yaml_free(token.data.scalar.value);
// break;
//
// default:
// break;
// }
//
// memset(token, 0, sizeof(yaml_token_t));
//}
//
///*
// * Check if a string is a valid UTF-8 sequence.
// *
// * Check 'reader.c' for more details on UTF-8 encoding.
// */
//
//static int
//yaml_check_utf8(yaml_char_t *start, size_t length)
//{
// yaml_char_t *end = start+length;
// yaml_char_t *pointer = start;
//
// while (pointer < end) {
// unsigned char octet;
// unsigned int width;
// unsigned int value;
// size_t k;
//
// octet = pointer[0];
// width = (octet & 0x80) == 0x00 ? 1 :
// (octet & 0xE0) == 0xC0 ? 2 :
// (octet & 0xF0) == 0xE0 ? 3 :
// (octet & 0xF8) == 0xF0 ? 4 : 0;
// value = (octet & 0x80) == 0x00 ? octet & 0x7F :
// (octet & 0xE0) == 0xC0 ? octet & 0x1F :
// (octet & 0xF0) == 0xE0 ? octet & 0x0F :
// (octet & 0xF8) == 0xF0 ? octet & 0x07 : 0;
// if (!width) return 0;
// if (pointer+width > end) return 0;
// for (k = 1; k < width; k ++) {
// octet = pointer[k];
// if ((octet & 0xC0) != 0x80) return 0;
// value = (value << 6) + (octet & 0x3F);
// }
// if (!((width == 1) ||
// (width == 2 && value >= 0x80) ||
// (width == 3 && value >= 0x800) ||
// (width == 4 && value >= 0x10000))) return 0;
//
// pointer += width;
// }
//
// return 1;
//}
//
// Create STREAM-START.
func yaml_stream_start_event_initialize(event *yaml_event_t, encoding yaml_encoding_t) bool {
*event = yaml_event_t{
typ: yaml_STREAM_START_EVENT,
encoding: encoding,
}
return true
}
// Create STREAM-END.
func yaml_stream_end_event_initialize(event *yaml_event_t) bool {
*event = yaml_event_t{
typ: yaml_STREAM_END_EVENT,
}
return true
}
// Create DOCUMENT-START.
func yaml_document_start_event_initialize(event *yaml_event_t, version_directive *yaml_version_directive_t,
tag_directives []yaml_tag_directive_t, implicit bool) bool {
*event = yaml_event_t{
typ: yaml_DOCUMENT_START_EVENT,
version_directive: version_directive,
tag_directives: tag_directives,
implicit: implicit,
}
return true
}
// Create DOCUMENT-END.
func yaml_document_end_event_initialize(event *yaml_event_t, implicit bool) bool {
*event = yaml_event_t{
typ: yaml_DOCUMENT_END_EVENT,
implicit: implicit,
}
return true
}
///*
// * Create ALIAS.
// */
//
//YAML_DECLARE(int)
//yaml_alias_event_initialize(event *yaml_event_t, anchor *yaml_char_t)
//{
// mark yaml_mark_t = { 0, 0, 0 }
// anchor_copy *yaml_char_t = NULL
//
// assert(event) // Non-NULL event object is expected.
// assert(anchor) // Non-NULL anchor is expected.
//
// if (!yaml_check_utf8(anchor, strlen((char *)anchor))) return 0
//
// anchor_copy = yaml_strdup(anchor)
// if (!anchor_copy)
// return 0
//
// ALIAS_EVENT_INIT(*event, anchor_copy, mark, mark)
//
// return 1
//}
// Create SCALAR.
func yaml_scalar_event_initialize(event *yaml_event_t, anchor, tag, value []byte, plain_implicit, quoted_implicit bool, style yaml_scalar_style_t) bool {
*event = yaml_event_t{
typ: yaml_SCALAR_EVENT,
anchor: anchor,
tag: tag,
value: value,
implicit: plain_implicit,
quoted_implicit: quoted_implicit,
style: yaml_style_t(style),
}
return true
}
// Create SEQUENCE-START.
func yaml_sequence_start_event_initialize(event *yaml_event_t, anchor, tag []byte, implicit bool, style yaml_sequence_style_t) bool {
*event = yaml_event_t{
typ: yaml_SEQUENCE_START_EVENT,
anchor: anchor,
tag: tag,
implicit: implicit,
style: yaml_style_t(style),
}
return true
}
// Create SEQUENCE-END.
func yaml_sequence_end_event_initialize(event *yaml_event_t) bool {
*event = yaml_event_t{
typ: yaml_SEQUENCE_END_EVENT,
}
return true
}
// Create MAPPING-START.
func yaml_mapping_start_event_initialize(event *yaml_event_t, anchor, tag []byte, implicit bool, style yaml_mapping_style_t) bool {
*event = yaml_event_t{
typ: yaml_MAPPING_START_EVENT,
anchor: anchor,
tag: tag,
implicit: implicit,
style: yaml_style_t(style),
}
return true
}
// Create MAPPING-END.
func yaml_mapping_end_event_initialize(event *yaml_event_t) bool {
*event = yaml_event_t{
typ: yaml_MAPPING_END_EVENT,
}
return true
}
// Destroy an event object.
func yaml_event_delete(event *yaml_event_t) {
*event = yaml_event_t{}
}
///*
// * Create a document object.
// */
//
//YAML_DECLARE(int)
//yaml_document_initialize(document *yaml_document_t,
// version_directive *yaml_version_directive_t,
// tag_directives_start *yaml_tag_directive_t,
// tag_directives_end *yaml_tag_directive_t,
// start_implicit int, end_implicit int)
//{
// struct {
// error yaml_error_type_t
// } context
// struct {
// start *yaml_node_t
// end *yaml_node_t
// top *yaml_node_t
// } nodes = { NULL, NULL, NULL }
// version_directive_copy *yaml_version_directive_t = NULL
// struct {
// start *yaml_tag_directive_t
// end *yaml_tag_directive_t
// top *yaml_tag_directive_t
// } tag_directives_copy = { NULL, NULL, NULL }
// value yaml_tag_directive_t = { NULL, NULL }
// mark yaml_mark_t = { 0, 0, 0 }
//
// assert(document) // Non-NULL document object is expected.
// assert((tag_directives_start && tag_directives_end) ||
// (tag_directives_start == tag_directives_end))
// // Valid tag directives are expected.
//
// if (!STACK_INIT(&context, nodes, INITIAL_STACK_SIZE)) goto error
//
// if (version_directive) {
// version_directive_copy = yaml_malloc(sizeof(yaml_version_directive_t))
// if (!version_directive_copy) goto error
// version_directive_copy.major = version_directive.major
// version_directive_copy.minor = version_directive.minor
// }
//
// if (tag_directives_start != tag_directives_end) {
// tag_directive *yaml_tag_directive_t
// if (!STACK_INIT(&context, tag_directives_copy, INITIAL_STACK_SIZE))
// goto error
// for (tag_directive = tag_directives_start
// tag_directive != tag_directives_end; tag_directive ++) {
// assert(tag_directive.handle)
// assert(tag_directive.prefix)
// if (!yaml_check_utf8(tag_directive.handle,
// strlen((char *)tag_directive.handle)))
// goto error
// if (!yaml_check_utf8(tag_directive.prefix,
// strlen((char *)tag_directive.prefix)))
// goto error
// value.handle = yaml_strdup(tag_directive.handle)
// value.prefix = yaml_strdup(tag_directive.prefix)
// if (!value.handle || !value.prefix) goto error
// if (!PUSH(&context, tag_directives_copy, value))
// goto error
// value.handle = NULL
// value.prefix = NULL
// }
// }
//
// DOCUMENT_INIT(*document, nodes.start, nodes.end, version_directive_copy,
// tag_directives_copy.start, tag_directives_copy.top,
// start_implicit, end_implicit, mark, mark)
//
// return 1
//
//error:
// STACK_DEL(&context, nodes)
// yaml_free(version_directive_copy)
// while (!STACK_EMPTY(&context, tag_directives_copy)) {
// value yaml_tag_directive_t = POP(&context, tag_directives_copy)
// yaml_free(value.handle)
// yaml_free(value.prefix)
// }
// STACK_DEL(&context, tag_directives_copy)
// yaml_free(value.handle)
// yaml_free(value.prefix)
//
// return 0
//}
//
///*
// * Destroy a document object.
// */
//
//YAML_DECLARE(void)
//yaml_document_delete(document *yaml_document_t)
//{
// struct {
// error yaml_error_type_t
// } context
// tag_directive *yaml_tag_directive_t
//
// context.error = YAML_NO_ERROR // Eliminate a compliler warning.
//
// assert(document) // Non-NULL document object is expected.
//
// while (!STACK_EMPTY(&context, document.nodes)) {
// node yaml_node_t = POP(&context, document.nodes)
// yaml_free(node.tag)
// switch (node.type) {
// case YAML_SCALAR_NODE:
// yaml_free(node.data.scalar.value)
// break
// case YAML_SEQUENCE_NODE:
// STACK_DEL(&context, node.data.sequence.items)
// break
// case YAML_MAPPING_NODE:
// STACK_DEL(&context, node.data.mapping.pairs)
// break
// default:
// assert(0) // Should not happen.
// }
// }
// STACK_DEL(&context, document.nodes)
//
// yaml_free(document.version_directive)
// for (tag_directive = document.tag_directives.start
// tag_directive != document.tag_directives.end
// tag_directive++) {
// yaml_free(tag_directive.handle)
// yaml_free(tag_directive.prefix)
// }
// yaml_free(document.tag_directives.start)
//
// memset(document, 0, sizeof(yaml_document_t))
//}
//
///**
// * Get a document node.
// */
//
//YAML_DECLARE(yaml_node_t *)
//yaml_document_get_node(document *yaml_document_t, index int)
//{
// assert(document) // Non-NULL document object is expected.
//
// if (index > 0 && document.nodes.start + index <= document.nodes.top) {
// return document.nodes.start + index - 1
// }
// return NULL
//}
//
///**
// * Get the root object.
// */
//
//YAML_DECLARE(yaml_node_t *)
//yaml_document_get_root_node(document *yaml_document_t)
//{
// assert(document) // Non-NULL document object is expected.
//
// if (document.nodes.top != document.nodes.start) {
// return document.nodes.start
// }
// return NULL
//}
//
///*
// * Add a scalar node to a document.
// */
//
//YAML_DECLARE(int)
//yaml_document_add_scalar(document *yaml_document_t,
// tag *yaml_char_t, value *yaml_char_t, length int,
// style yaml_scalar_style_t)
//{
// struct {
// error yaml_error_type_t
// } context
// mark yaml_mark_t = { 0, 0, 0 }
// tag_copy *yaml_char_t = NULL
// value_copy *yaml_char_t = NULL
// node yaml_node_t
//
// assert(document) // Non-NULL document object is expected.
// assert(value) // Non-NULL value is expected.
//
// if (!tag) {
// tag = (yaml_char_t *)YAML_DEFAULT_SCALAR_TAG
// }
//
// if (!yaml_check_utf8(tag, strlen((char *)tag))) goto error
// tag_copy = yaml_strdup(tag)
// if (!tag_copy) goto error
//
// if (length < 0) {
// length = strlen((char *)value)
// }
//
// if (!yaml_check_utf8(value, length)) goto error
// value_copy = yaml_malloc(length+1)
// if (!value_copy) goto error
// memcpy(value_copy, value, length)
// value_copy[length] = '\0'
//
// SCALAR_NODE_INIT(node, tag_copy, value_copy, length, style, mark, mark)
// if (!PUSH(&context, document.nodes, node)) goto error
//
// return document.nodes.top - document.nodes.start
//
//error:
// yaml_free(tag_copy)
// yaml_free(value_copy)
//
// return 0
//}
//
///*
// * Add a sequence node to a document.
// */
//
//YAML_DECLARE(int)
//yaml_document_add_sequence(document *yaml_document_t,
// tag *yaml_char_t, style yaml_sequence_style_t)
//{
// struct {
// error yaml_error_type_t
// } context
// mark yaml_mark_t = { 0, 0, 0 }
// tag_copy *yaml_char_t = NULL
// struct {
// start *yaml_node_item_t
// end *yaml_node_item_t
// top *yaml_node_item_t
// } items = { NULL, NULL, NULL }
// node yaml_node_t
//
// assert(document) // Non-NULL document object is expected.
//
// if (!tag) {
// tag = (yaml_char_t *)YAML_DEFAULT_SEQUENCE_TAG
// }
//
// if (!yaml_check_utf8(tag, strlen((char *)tag))) goto error
// tag_copy = yaml_strdup(tag)
// if (!tag_copy) goto error
//
// if (!STACK_INIT(&context, items, INITIAL_STACK_SIZE)) goto error
//
// SEQUENCE_NODE_INIT(node, tag_copy, items.start, items.end,
// style, mark, mark)
// if (!PUSH(&context, document.nodes, node)) goto error
//
// return document.nodes.top - document.nodes.start
//
//error:
// STACK_DEL(&context, items)
// yaml_free(tag_copy)
//
// return 0
//}
//
///*
// * Add a mapping node to a document.
// */
//
//YAML_DECLARE(int)
//yaml_document_add_mapping(document *yaml_document_t,
// tag *yaml_char_t, style yaml_mapping_style_t)
//{
// struct {
// error yaml_error_type_t
// } context
// mark yaml_mark_t = { 0, 0, 0 }
// tag_copy *yaml_char_t = NULL
// struct {
// start *yaml_node_pair_t
// end *yaml_node_pair_t
// top *yaml_node_pair_t
// } pairs = { NULL, NULL, NULL }
// node yaml_node_t
//
// assert(document) // Non-NULL document object is expected.
//
// if (!tag) {
// tag = (yaml_char_t *)YAML_DEFAULT_MAPPING_TAG
// }
//
// if (!yaml_check_utf8(tag, strlen((char *)tag))) goto error
// tag_copy = yaml_strdup(tag)
// if (!tag_copy) goto error
//
// if (!STACK_INIT(&context, pairs, INITIAL_STACK_SIZE)) goto error
//
// MAPPING_NODE_INIT(node, tag_copy, pairs.start, pairs.end,
// style, mark, mark)
// if (!PUSH(&context, document.nodes, node)) goto error
//
// return document.nodes.top - document.nodes.start
//
//error:
// STACK_DEL(&context, pairs)
// yaml_free(tag_copy)
//
// return 0
//}
//
///*
// * Append an item to a sequence node.
// */
//
//YAML_DECLARE(int)
//yaml_document_append_sequence_item(document *yaml_document_t,
// sequence int, item int)
//{
// struct {
// error yaml_error_type_t
// } context
//
// assert(document) // Non-NULL document is required.
// assert(sequence > 0
// && document.nodes.start + sequence <= document.nodes.top)
// // Valid sequence id is required.
// assert(document.nodes.start[sequence-1].type == YAML_SEQUENCE_NODE)
// // A sequence node is required.
// assert(item > 0 && document.nodes.start + item <= document.nodes.top)
// // Valid item id is required.
//
// if (!PUSH(&context,
// document.nodes.start[sequence-1].data.sequence.items, item))
// return 0
//
// return 1
//}
//
///*
// * Append a pair of a key and a value to a mapping node.
// */
//
//YAML_DECLARE(int)
//yaml_document_append_mapping_pair(document *yaml_document_t,
// mapping int, key int, value int)
//{
// struct {
// error yaml_error_type_t
// } context
//
// pair yaml_node_pair_t
//
// assert(document) // Non-NULL document is required.
// assert(mapping > 0
// && document.nodes.start + mapping <= document.nodes.top)
// // Valid mapping id is required.
// assert(document.nodes.start[mapping-1].type == YAML_MAPPING_NODE)
// // A mapping node is required.
// assert(key > 0 && document.nodes.start + key <= document.nodes.top)
// // Valid key id is required.
// assert(value > 0 && document.nodes.start + value <= document.nodes.top)
// // Valid value id is required.
//
// pair.key = key
// pair.value = value
//
// if (!PUSH(&context,
// document.nodes.start[mapping-1].data.mapping.pairs, pair))
// return 0
//
// return 1
//}
//
//

683
vendor/gopkg.in/yaml.v2/decode.go generated vendored Normal file
View file

@ -0,0 +1,683 @@
package yaml
import (
"encoding"
"encoding/base64"
"fmt"
"math"
"reflect"
"strconv"
"time"
)
const (
documentNode = 1 << iota
mappingNode
sequenceNode
scalarNode
aliasNode
)
type node struct {
kind int
line, column int
tag string
value string
implicit bool
children []*node
anchors map[string]*node
}
// ----------------------------------------------------------------------------
// Parser, produces a node tree out of a libyaml event stream.
type parser struct {
parser yaml_parser_t
event yaml_event_t
doc *node
}
func newParser(b []byte) *parser {
p := parser{}
if !yaml_parser_initialize(&p.parser) {
panic("failed to initialize YAML emitter")
}
if len(b) == 0 {
b = []byte{'\n'}
}
yaml_parser_set_input_string(&p.parser, b)
p.skip()
if p.event.typ != yaml_STREAM_START_EVENT {
panic("expected stream start event, got " + strconv.Itoa(int(p.event.typ)))
}
p.skip()
return &p
}
func (p *parser) destroy() {
if p.event.typ != yaml_NO_EVENT {
yaml_event_delete(&p.event)
}
yaml_parser_delete(&p.parser)
}
func (p *parser) skip() {
if p.event.typ != yaml_NO_EVENT {
if p.event.typ == yaml_STREAM_END_EVENT {
failf("attempted to go past the end of stream; corrupted value?")
}
yaml_event_delete(&p.event)
}
if !yaml_parser_parse(&p.parser, &p.event) {
p.fail()
}
}
func (p *parser) fail() {
var where string
var line int
if p.parser.problem_mark.line != 0 {
line = p.parser.problem_mark.line
} else if p.parser.context_mark.line != 0 {
line = p.parser.context_mark.line
}
if line != 0 {
where = "line " + strconv.Itoa(line) + ": "
}
var msg string
if len(p.parser.problem) > 0 {
msg = p.parser.problem
} else {
msg = "unknown problem parsing YAML content"
}
failf("%s%s", where, msg)
}
func (p *parser) anchor(n *node, anchor []byte) {
if anchor != nil {
p.doc.anchors[string(anchor)] = n
}
}
func (p *parser) parse() *node {
switch p.event.typ {
case yaml_SCALAR_EVENT:
return p.scalar()
case yaml_ALIAS_EVENT:
return p.alias()
case yaml_MAPPING_START_EVENT:
return p.mapping()
case yaml_SEQUENCE_START_EVENT:
return p.sequence()
case yaml_DOCUMENT_START_EVENT:
return p.document()
case yaml_STREAM_END_EVENT:
// Happens when attempting to decode an empty buffer.
return nil
default:
panic("attempted to parse unknown event: " + strconv.Itoa(int(p.event.typ)))
}
panic("unreachable")
}
func (p *parser) node(kind int) *node {
return &node{
kind: kind,
line: p.event.start_mark.line,
column: p.event.start_mark.column,
}
}
func (p *parser) document() *node {
n := p.node(documentNode)
n.anchors = make(map[string]*node)
p.doc = n
p.skip()
n.children = append(n.children, p.parse())
if p.event.typ != yaml_DOCUMENT_END_EVENT {
panic("expected end of document event but got " + strconv.Itoa(int(p.event.typ)))
}
p.skip()
return n
}
func (p *parser) alias() *node {
n := p.node(aliasNode)
n.value = string(p.event.anchor)
p.skip()
return n
}
func (p *parser) scalar() *node {
n := p.node(scalarNode)
n.value = string(p.event.value)
n.tag = string(p.event.tag)
n.implicit = p.event.implicit
p.anchor(n, p.event.anchor)
p.skip()
return n
}
func (p *parser) sequence() *node {
n := p.node(sequenceNode)
p.anchor(n, p.event.anchor)
p.skip()
for p.event.typ != yaml_SEQUENCE_END_EVENT {
n.children = append(n.children, p.parse())
}
p.skip()
return n
}
func (p *parser) mapping() *node {
n := p.node(mappingNode)
p.anchor(n, p.event.anchor)
p.skip()
for p.event.typ != yaml_MAPPING_END_EVENT {
n.children = append(n.children, p.parse(), p.parse())
}
p.skip()
return n
}
// ----------------------------------------------------------------------------
// Decoder, unmarshals a node into a provided value.
type decoder struct {
doc *node
aliases map[string]bool
mapType reflect.Type
terrors []string
}
var (
mapItemType = reflect.TypeOf(MapItem{})
durationType = reflect.TypeOf(time.Duration(0))
defaultMapType = reflect.TypeOf(map[interface{}]interface{}{})
ifaceType = defaultMapType.Elem()
)
func newDecoder() *decoder {
d := &decoder{mapType: defaultMapType}
d.aliases = make(map[string]bool)
return d
}
func (d *decoder) terror(n *node, tag string, out reflect.Value) {
if n.tag != "" {
tag = n.tag
}
value := n.value
if tag != yaml_SEQ_TAG && tag != yaml_MAP_TAG {
if len(value) > 10 {
value = " `" + value[:7] + "...`"
} else {
value = " `" + value + "`"
}
}
d.terrors = append(d.terrors, fmt.Sprintf("line %d: cannot unmarshal %s%s into %s", n.line+1, shortTag(tag), value, out.Type()))
}
func (d *decoder) callUnmarshaler(n *node, u Unmarshaler) (good bool) {
terrlen := len(d.terrors)
err := u.UnmarshalYAML(func(v interface{}) (err error) {
defer handleErr(&err)
d.unmarshal(n, reflect.ValueOf(v))
if len(d.terrors) > terrlen {
issues := d.terrors[terrlen:]
d.terrors = d.terrors[:terrlen]
return &TypeError{issues}
}
return nil
})
if e, ok := err.(*TypeError); ok {
d.terrors = append(d.terrors, e.Errors...)
return false
}
if err != nil {
fail(err)
}
return true
}
// d.prepare initializes and dereferences pointers and calls UnmarshalYAML
// if a value is found to implement it.
// It returns the initialized and dereferenced out value, whether
// unmarshalling was already done by UnmarshalYAML, and if so whether
// its types unmarshalled appropriately.
//
// If n holds a null value, prepare returns before doing anything.
func (d *decoder) prepare(n *node, out reflect.Value) (newout reflect.Value, unmarshaled, good bool) {
if n.tag == yaml_NULL_TAG || n.kind == scalarNode && n.tag == "" && (n.value == "null" || n.value == "") {
return out, false, false
}
again := true
for again {
again = false
if out.Kind() == reflect.Ptr {
if out.IsNil() {
out.Set(reflect.New(out.Type().Elem()))
}
out = out.Elem()
again = true
}
if out.CanAddr() {
if u, ok := out.Addr().Interface().(Unmarshaler); ok {
good = d.callUnmarshaler(n, u)
return out, true, good
}
}
}
return out, false, false
}
func (d *decoder) unmarshal(n *node, out reflect.Value) (good bool) {
switch n.kind {
case documentNode:
return d.document(n, out)
case aliasNode:
return d.alias(n, out)
}
out, unmarshaled, good := d.prepare(n, out)
if unmarshaled {
return good
}
switch n.kind {
case scalarNode:
good = d.scalar(n, out)
case mappingNode:
good = d.mapping(n, out)
case sequenceNode:
good = d.sequence(n, out)
default:
panic("internal error: unknown node kind: " + strconv.Itoa(n.kind))
}
return good
}
func (d *decoder) document(n *node, out reflect.Value) (good bool) {
if len(n.children) == 1 {
d.doc = n
d.unmarshal(n.children[0], out)
return true
}
return false
}
func (d *decoder) alias(n *node, out reflect.Value) (good bool) {
an, ok := d.doc.anchors[n.value]
if !ok {
failf("unknown anchor '%s' referenced", n.value)
}
if d.aliases[n.value] {
failf("anchor '%s' value contains itself", n.value)
}
d.aliases[n.value] = true
good = d.unmarshal(an, out)
delete(d.aliases, n.value)
return good
}
var zeroValue reflect.Value
func resetMap(out reflect.Value) {
for _, k := range out.MapKeys() {
out.SetMapIndex(k, zeroValue)
}
}
func (d *decoder) scalar(n *node, out reflect.Value) (good bool) {
var tag string
var resolved interface{}
if n.tag == "" && !n.implicit {
tag = yaml_STR_TAG
resolved = n.value
} else {
tag, resolved = resolve(n.tag, n.value)
if tag == yaml_BINARY_TAG {
data, err := base64.StdEncoding.DecodeString(resolved.(string))
if err != nil {
failf("!!binary value contains invalid base64 data")
}
resolved = string(data)
}
}
if resolved == nil {
if out.Kind() == reflect.Map && !out.CanAddr() {
resetMap(out)
} else {
out.Set(reflect.Zero(out.Type()))
}
return true
}
if s, ok := resolved.(string); ok && out.CanAddr() {
if u, ok := out.Addr().Interface().(encoding.TextUnmarshaler); ok {
err := u.UnmarshalText([]byte(s))
if err != nil {
fail(err)
}
return true
}
}
switch out.Kind() {
case reflect.String:
if tag == yaml_BINARY_TAG {
out.SetString(resolved.(string))
good = true
} else if resolved != nil {
out.SetString(n.value)
good = true
}
case reflect.Interface:
if resolved == nil {
out.Set(reflect.Zero(out.Type()))
} else {
out.Set(reflect.ValueOf(resolved))
}
good = true
case reflect.Int, reflect.Int8, reflect.Int16, reflect.Int32, reflect.Int64:
switch resolved := resolved.(type) {
case int:
if !out.OverflowInt(int64(resolved)) {
out.SetInt(int64(resolved))
good = true
}
case int64:
if !out.OverflowInt(resolved) {
out.SetInt(resolved)
good = true
}
case uint64:
if resolved <= math.MaxInt64 && !out.OverflowInt(int64(resolved)) {
out.SetInt(int64(resolved))
good = true
}
case float64:
if resolved <= math.MaxInt64 && !out.OverflowInt(int64(resolved)) {
out.SetInt(int64(resolved))
good = true
}
case string:
if out.Type() == durationType {
d, err := time.ParseDuration(resolved)
if err == nil {
out.SetInt(int64(d))
good = true
}
}
}
case reflect.Uint, reflect.Uint8, reflect.Uint16, reflect.Uint32, reflect.Uint64, reflect.Uintptr:
switch resolved := resolved.(type) {
case int:
if resolved >= 0 && !out.OverflowUint(uint64(resolved)) {
out.SetUint(uint64(resolved))
good = true
}
case int64:
if resolved >= 0 && !out.OverflowUint(uint64(resolved)) {
out.SetUint(uint64(resolved))
good = true
}
case uint64:
if !out.OverflowUint(uint64(resolved)) {
out.SetUint(uint64(resolved))
good = true
}
case float64:
if resolved <= math.MaxUint64 && !out.OverflowUint(uint64(resolved)) {
out.SetUint(uint64(resolved))
good = true
}
}
case reflect.Bool:
switch resolved := resolved.(type) {
case bool:
out.SetBool(resolved)
good = true
}
case reflect.Float32, reflect.Float64:
switch resolved := resolved.(type) {
case int:
out.SetFloat(float64(resolved))
good = true
case int64:
out.SetFloat(float64(resolved))
good = true
case uint64:
out.SetFloat(float64(resolved))
good = true
case float64:
out.SetFloat(resolved)
good = true
}
case reflect.Ptr:
if out.Type().Elem() == reflect.TypeOf(resolved) {
// TODO DOes this make sense? When is out a Ptr except when decoding a nil value?
elem := reflect.New(out.Type().Elem())
elem.Elem().Set(reflect.ValueOf(resolved))
out.Set(elem)
good = true
}
}
if !good {
d.terror(n, tag, out)
}
return good
}
func settableValueOf(i interface{}) reflect.Value {
v := reflect.ValueOf(i)
sv := reflect.New(v.Type()).Elem()
sv.Set(v)
return sv
}
func (d *decoder) sequence(n *node, out reflect.Value) (good bool) {
l := len(n.children)
var iface reflect.Value
switch out.Kind() {
case reflect.Slice:
out.Set(reflect.MakeSlice(out.Type(), l, l))
case reflect.Interface:
// No type hints. Will have to use a generic sequence.
iface = out
out = settableValueOf(make([]interface{}, l))
default:
d.terror(n, yaml_SEQ_TAG, out)
return false
}
et := out.Type().Elem()
j := 0
for i := 0; i < l; i++ {
e := reflect.New(et).Elem()
if ok := d.unmarshal(n.children[i], e); ok {
out.Index(j).Set(e)
j++
}
}
out.Set(out.Slice(0, j))
if iface.IsValid() {
iface.Set(out)
}
return true
}
func (d *decoder) mapping(n *node, out reflect.Value) (good bool) {
switch out.Kind() {
case reflect.Struct:
return d.mappingStruct(n, out)
case reflect.Slice:
return d.mappingSlice(n, out)
case reflect.Map:
// okay
case reflect.Interface:
if d.mapType.Kind() == reflect.Map {
iface := out
out = reflect.MakeMap(d.mapType)
iface.Set(out)
} else {
slicev := reflect.New(d.mapType).Elem()
if !d.mappingSlice(n, slicev) {
return false
}
out.Set(slicev)
return true
}
default:
d.terror(n, yaml_MAP_TAG, out)
return false
}
outt := out.Type()
kt := outt.Key()
et := outt.Elem()
mapType := d.mapType
if outt.Key() == ifaceType && outt.Elem() == ifaceType {
d.mapType = outt
}
if out.IsNil() {
out.Set(reflect.MakeMap(outt))
}
l := len(n.children)
for i := 0; i < l; i += 2 {
if isMerge(n.children[i]) {
d.merge(n.children[i+1], out)
continue
}
k := reflect.New(kt).Elem()
if d.unmarshal(n.children[i], k) {
kkind := k.Kind()
if kkind == reflect.Interface {
kkind = k.Elem().Kind()
}
if kkind == reflect.Map || kkind == reflect.Slice {
failf("invalid map key: %#v", k.Interface())
}
e := reflect.New(et).Elem()
if d.unmarshal(n.children[i+1], e) {
out.SetMapIndex(k, e)
}
}
}
d.mapType = mapType
return true
}
func (d *decoder) mappingSlice(n *node, out reflect.Value) (good bool) {
outt := out.Type()
if outt.Elem() != mapItemType {
d.terror(n, yaml_MAP_TAG, out)
return false
}
mapType := d.mapType
d.mapType = outt
var slice []MapItem
var l = len(n.children)
for i := 0; i < l; i += 2 {
if isMerge(n.children[i]) {
d.merge(n.children[i+1], out)
continue
}
item := MapItem{}
k := reflect.ValueOf(&item.Key).Elem()
if d.unmarshal(n.children[i], k) {
v := reflect.ValueOf(&item.Value).Elem()
if d.unmarshal(n.children[i+1], v) {
slice = append(slice, item)
}
}
}
out.Set(reflect.ValueOf(slice))
d.mapType = mapType
return true
}
func (d *decoder) mappingStruct(n *node, out reflect.Value) (good bool) {
sinfo, err := getStructInfo(out.Type())
if err != nil {
panic(err)
}
name := settableValueOf("")
l := len(n.children)
var inlineMap reflect.Value
var elemType reflect.Type
if sinfo.InlineMap != -1 {
inlineMap = out.Field(sinfo.InlineMap)
inlineMap.Set(reflect.New(inlineMap.Type()).Elem())
elemType = inlineMap.Type().Elem()
}
for i := 0; i < l; i += 2 {
ni := n.children[i]
if isMerge(ni) {
d.merge(n.children[i+1], out)
continue
}
if !d.unmarshal(ni, name) {
continue
}
if info, ok := sinfo.FieldsMap[name.String()]; ok {
var field reflect.Value
if info.Inline == nil {
field = out.Field(info.Num)
} else {
field = out.FieldByIndex(info.Inline)
}
d.unmarshal(n.children[i+1], field)
} else if sinfo.InlineMap != -1 {
if inlineMap.IsNil() {
inlineMap.Set(reflect.MakeMap(inlineMap.Type()))
}
value := reflect.New(elemType).Elem()
d.unmarshal(n.children[i+1], value)
inlineMap.SetMapIndex(name, value)
}
}
return true
}
func failWantMap() {
failf("map merge requires map or sequence of maps as the value")
}
func (d *decoder) merge(n *node, out reflect.Value) {
switch n.kind {
case mappingNode:
d.unmarshal(n, out)
case aliasNode:
an, ok := d.doc.anchors[n.value]
if ok && an.kind != mappingNode {
failWantMap()
}
d.unmarshal(n, out)
case sequenceNode:
// Step backwards as earlier nodes take precedence.
for i := len(n.children) - 1; i >= 0; i-- {
ni := n.children[i]
if ni.kind == aliasNode {
an, ok := d.doc.anchors[ni.value]
if ok && an.kind != mappingNode {
failWantMap()
}
} else if ni.kind != mappingNode {
failWantMap()
}
d.unmarshal(ni, out)
}
default:
failWantMap()
}
}
func isMerge(n *node) bool {
return n.kind == scalarNode && n.value == "<<" && (n.implicit == true || n.tag == yaml_MERGE_TAG)
}

Some files were not shown because too many files have changed in this diff Show more