1
0
Fork 0
mirror of https://github.com/Luzifer/vault-openvpn.git synced 2024-11-14 11:02:45 +00:00
vault-openvpn/vendor/golang.org/x/text/internal/colltab/table.go
Knut Ahlers 4d62cd0789
Update dependencies
Signed-off-by: Knut Ahlers <knut@ahlers.me>
2017-10-10 10:19:14 +02:00

275 lines
7.1 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package colltab
import (
"unicode/utf8"
"golang.org/x/text/unicode/norm"
)
// Table holds all collation data for a given collation ordering.
type Table struct {
Index Trie // main trie
// expansion info
ExpandElem []uint32
// contraction info
ContractTries ContractTrieSet
ContractElem []uint32
MaxContractLen int
VariableTop uint32
}
func (t *Table) AppendNext(w []Elem, b []byte) (res []Elem, n int) {
return t.appendNext(w, source{bytes: b})
}
func (t *Table) AppendNextString(w []Elem, s string) (res []Elem, n int) {
return t.appendNext(w, source{str: s})
}
func (t *Table) Start(p int, b []byte) int {
// TODO: implement
panic("not implemented")
}
func (t *Table) StartString(p int, s string) int {
// TODO: implement
panic("not implemented")
}
func (t *Table) Domain() []string {
// TODO: implement
panic("not implemented")
}
func (t *Table) Top() uint32 {
return t.VariableTop
}
type source struct {
str string
bytes []byte
}
func (src *source) lookup(t *Table) (ce Elem, sz int) {
if src.bytes == nil {
return t.Index.lookupString(src.str)
}
return t.Index.lookup(src.bytes)
}
func (src *source) tail(sz int) {
if src.bytes == nil {
src.str = src.str[sz:]
} else {
src.bytes = src.bytes[sz:]
}
}
func (src *source) nfd(buf []byte, end int) []byte {
if src.bytes == nil {
return norm.NFD.AppendString(buf[:0], src.str[:end])
}
return norm.NFD.Append(buf[:0], src.bytes[:end]...)
}
func (src *source) rune() (r rune, sz int) {
if src.bytes == nil {
return utf8.DecodeRuneInString(src.str)
}
return utf8.DecodeRune(src.bytes)
}
func (src *source) properties(f norm.Form) norm.Properties {
if src.bytes == nil {
return f.PropertiesString(src.str)
}
return f.Properties(src.bytes)
}
// appendNext appends the weights corresponding to the next rune or
// contraction in s. If a contraction is matched to a discontinuous
// sequence of runes, the weights for the interstitial runes are
// appended as well. It returns a new slice that includes the appended
// weights and the number of bytes consumed from s.
func (t *Table) appendNext(w []Elem, src source) (res []Elem, n int) {
ce, sz := src.lookup(t)
tp := ce.ctype()
if tp == ceNormal {
if ce == 0 {
r, _ := src.rune()
const (
hangulSize = 3
firstHangul = 0xAC00
lastHangul = 0xD7A3
)
if r >= firstHangul && r <= lastHangul {
// TODO: performance can be considerably improved here.
n = sz
var buf [16]byte // Used for decomposing Hangul.
for b := src.nfd(buf[:0], hangulSize); len(b) > 0; b = b[sz:] {
ce, sz = t.Index.lookup(b)
w = append(w, ce)
}
return w, n
}
ce = makeImplicitCE(implicitPrimary(r))
}
w = append(w, ce)
} else if tp == ceExpansionIndex {
w = t.appendExpansion(w, ce)
} else if tp == ceContractionIndex {
n := 0
src.tail(sz)
if src.bytes == nil {
w, n = t.matchContractionString(w, ce, src.str)
} else {
w, n = t.matchContraction(w, ce, src.bytes)
}
sz += n
} else if tp == ceDecompose {
// Decompose using NFKD and replace tertiary weights.
t1, t2 := splitDecompose(ce)
i := len(w)
nfkd := src.properties(norm.NFKD).Decomposition()
for p := 0; len(nfkd) > 0; nfkd = nfkd[p:] {
w, p = t.appendNext(w, source{bytes: nfkd})
}
w[i] = w[i].updateTertiary(t1)
if i++; i < len(w) {
w[i] = w[i].updateTertiary(t2)
for i++; i < len(w); i++ {
w[i] = w[i].updateTertiary(maxTertiary)
}
}
}
return w, sz
}
func (t *Table) appendExpansion(w []Elem, ce Elem) []Elem {
i := splitExpandIndex(ce)
n := int(t.ExpandElem[i])
i++
for _, ce := range t.ExpandElem[i : i+n] {
w = append(w, Elem(ce))
}
return w
}
func (t *Table) matchContraction(w []Elem, ce Elem, suffix []byte) ([]Elem, int) {
index, n, offset := splitContractIndex(ce)
scan := t.ContractTries.scanner(index, n, suffix)
buf := [norm.MaxSegmentSize]byte{}
bufp := 0
p := scan.scan(0)
if !scan.done && p < len(suffix) && suffix[p] >= utf8.RuneSelf {
// By now we should have filtered most cases.
p0 := p
bufn := 0
rune := norm.NFD.Properties(suffix[p:])
p += rune.Size()
if rune.LeadCCC() != 0 {
prevCC := rune.TrailCCC()
// A gap may only occur in the last normalization segment.
// This also ensures that len(scan.s) < norm.MaxSegmentSize.
if end := norm.NFD.FirstBoundary(suffix[p:]); end != -1 {
scan.s = suffix[:p+end]
}
for p < len(suffix) && !scan.done && suffix[p] >= utf8.RuneSelf {
rune = norm.NFD.Properties(suffix[p:])
if ccc := rune.LeadCCC(); ccc == 0 || prevCC >= ccc {
break
}
prevCC = rune.TrailCCC()
if pp := scan.scan(p); pp != p {
// Copy the interstitial runes for later processing.
bufn += copy(buf[bufn:], suffix[p0:p])
if scan.pindex == pp {
bufp = bufn
}
p, p0 = pp, pp
} else {
p += rune.Size()
}
}
}
}
// Append weights for the matched contraction, which may be an expansion.
i, n := scan.result()
ce = Elem(t.ContractElem[i+offset])
if ce.ctype() == ceNormal {
w = append(w, ce)
} else {
w = t.appendExpansion(w, ce)
}
// Append weights for the runes in the segment not part of the contraction.
for b, p := buf[:bufp], 0; len(b) > 0; b = b[p:] {
w, p = t.appendNext(w, source{bytes: b})
}
return w, n
}
// TODO: unify the two implementations. This is best done after first simplifying
// the algorithm taking into account the inclusion of both NFC and NFD forms
// in the table.
func (t *Table) matchContractionString(w []Elem, ce Elem, suffix string) ([]Elem, int) {
index, n, offset := splitContractIndex(ce)
scan := t.ContractTries.scannerString(index, n, suffix)
buf := [norm.MaxSegmentSize]byte{}
bufp := 0
p := scan.scan(0)
if !scan.done && p < len(suffix) && suffix[p] >= utf8.RuneSelf {
// By now we should have filtered most cases.
p0 := p
bufn := 0
rune := norm.NFD.PropertiesString(suffix[p:])
p += rune.Size()
if rune.LeadCCC() != 0 {
prevCC := rune.TrailCCC()
// A gap may only occur in the last normalization segment.
// This also ensures that len(scan.s) < norm.MaxSegmentSize.
if end := norm.NFD.FirstBoundaryInString(suffix[p:]); end != -1 {
scan.s = suffix[:p+end]
}
for p < len(suffix) && !scan.done && suffix[p] >= utf8.RuneSelf {
rune = norm.NFD.PropertiesString(suffix[p:])
if ccc := rune.LeadCCC(); ccc == 0 || prevCC >= ccc {
break
}
prevCC = rune.TrailCCC()
if pp := scan.scan(p); pp != p {
// Copy the interstitial runes for later processing.
bufn += copy(buf[bufn:], suffix[p0:p])
if scan.pindex == pp {
bufp = bufn
}
p, p0 = pp, pp
} else {
p += rune.Size()
}
}
}
}
// Append weights for the matched contraction, which may be an expansion.
i, n := scan.result()
ce = Elem(t.ContractElem[i+offset])
if ce.ctype() == ceNormal {
w = append(w, ce)
} else {
w = t.appendExpansion(w, ce)
}
// Append weights for the runes in the segment not part of the contraction.
for b, p := buf[:bufp], 0; len(b) > 0; b = b[p:] {
w, p = t.appendNext(w, source{bytes: b})
}
return w, n
}