Vault [![Build Status](https://travis-ci.org/hashicorp/vault.svg)](https://travis-ci.org/hashicorp/vault) [![Join the chat at https://gitter.im/hashicorp-vault/Lobby](https://badges.gitter.im/hashicorp-vault/Lobby.svg)](https://gitter.im/hashicorp-vault/Lobby?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge&utm_content=badge) [![vault enterprise](https://img.shields.io/badge/vault-enterprise-yellow.svg?colorB=7c8797&colorA=000000)](https://www.hashicorp.com/products/vault/?utm_source=github&utm_medium=banner&utm_campaign=github-vault-enterprise)
**Please note**: We take Vault's security and our users' trust very seriously. If you believe you have found a security issue in Vault, _please responsibly disclose_ by contacting us at [security@hashicorp.com](mailto:security@hashicorp.com).
Vault is a tool for securely accessing secrets. A secret is anything that you want to tightly control access to, such as API keys, passwords, certificates, and more. Vault provides a unified interface to any secret, while providing tight access control and recording a detailed audit log.
A modern system requires access to a multitude of secrets: database credentials, API keys for external services, credentials for service-oriented architecture communication, etc. Understanding who is accessing what secrets is already very difficult and platform-specific. Adding on key rolling, secure storage, and detailed audit logs is almost impossible without a custom solution. This is where Vault steps in.
The key features of Vault are:
* **Secure Secret Storage**: Arbitrary key/value secrets can be stored
in Vault. Vault encrypts these secrets prior to writing them to persistent
storage, so gaining access to the raw storage isn't enough to access
your secrets. Vault can write to disk, [Consul](https://www.consul.io),
and more.
* **Dynamic Secrets**: Vault can generate secrets on-demand for some
systems, such as AWS or SQL databases. For example, when an application
needs to access an S3 bucket, it asks Vault for credentials, and Vault
will generate an AWS keypair with valid permissions on demand. After
creating these dynamic secrets, Vault will also automatically revoke them
after the lease is up.
* **Data Encryption**: Vault can encrypt and decrypt data without storing
it. This allows security teams to define encryption parameters and
developers to store encrypted data in a location such as SQL without
having to design their own encryption methods.
* **Leasing and Renewal**: All secrets in Vault have a _lease_ associated
with it. At the end of the lease, Vault will automatically revoke that
secret. Clients are able to renew leases via built-in renew APIs.
* **Revocation**: Vault has built-in support for secret revocation. Vault
can revoke not only single secrets, but a tree of secrets, for example
all secrets read by a specific user, or all secrets of a particular type.
Revocation assists in key rolling as well as locking down systems in the
case of an intrusion.
For more information, see the [introduction section](https://www.vaultproject.io/intro)
of the Vault website.
Getting Started & Documentation
-------------------------------
All documentation is available on the [Vault website](https://www.vaultproject.io).
Developing Vault
--------------------
If you wish to work on Vault itself or any of its built-in systems, you'll
For more information on Vault Enterprise features, visit the [Vault Enterprise site](https://www.hashicorp.com/products/vault/?utm_source=github&utm_medium=referral&utm_campaign=github-vault-enterprise).