1
0
Fork 0
mirror of https://github.com/Luzifer/staticmap.git synced 2024-12-21 05:11:18 +00:00
staticmap/vendor/github.com/golang/geo/s1/chordangle.go
Knut Ahlers 759b968510
Vendor dependencies
Signed-off-by: Knut Ahlers <knut@ahlers.me>
2017-06-27 22:50:36 +02:00

208 lines
7.4 KiB
Go

/*
Copyright 2015 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package s1
import (
"math"
)
// ChordAngle represents the angle subtended by a chord (i.e., the straight
// line segment connecting two points on the sphere). Its representation
// makes it very efficient for computing and comparing distances, but unlike
// Angle it is only capable of representing angles between 0 and π radians.
// Generally, ChordAngle should only be used in loops where many angles need
// to be calculated and compared. Otherwise it is simpler to use Angle.
//
// ChordAngle loses some accuracy as the angle approaches π radians.
// Specifically, the representation of (π - x) radians has an error of about
// (1e-15 / x), with a maximum error of about 2e-8 radians (about 13cm on the
// Earth's surface). For comparison, for angles up to π/2 radians (10000km)
// the worst-case representation error is about 2e-16 radians (1 nanonmeter),
// which is about the same as Angle.
//
// ChordAngles are represented by the squared chord length, which can
// range from 0 to 4. Positive infinity represents an infinite squared length.
type ChordAngle float64
const (
// NegativeChordAngle represents a chord angle smaller than the zero angle.
// The only valid operations on a NegativeChordAngle are comparisons and
// Angle conversions.
NegativeChordAngle = ChordAngle(-1)
// RightChordAngle represents a chord angle of 90 degrees (a "right angle").
RightChordAngle = ChordAngle(2)
// StraightChordAngle represents a chord angle of 180 degrees (a "straight angle").
// This is the maximum finite chord angle.
StraightChordAngle = ChordAngle(4)
)
// ChordAngleFromAngle returns a ChordAngle from the given Angle.
func ChordAngleFromAngle(a Angle) ChordAngle {
if a < 0 {
return NegativeChordAngle
}
if a.isInf() {
return InfChordAngle()
}
l := 2 * math.Sin(0.5*math.Min(math.Pi, a.Radians()))
return ChordAngle(l * l)
}
// ChordAngleFromSquaredLength returns a ChordAngle from the squared chord length.
// Note that the argument is automatically clamped to a maximum of 4.0 to
// handle possible roundoff errors. The argument must be non-negative.
func ChordAngleFromSquaredLength(length2 float64) ChordAngle {
if length2 > 4 {
return StraightChordAngle
}
return ChordAngle(length2)
}
// Expanded returns a new ChordAngle that has been adjusted by the given error
// bound (which can be positive or negative). Error should be the value
// returned by either MaxPointError or MaxAngleError. For example:
// a := ChordAngleFromPoints(x, y)
// a1 := a.Expanded(a.MaxPointError())
func (c ChordAngle) Expanded(e float64) ChordAngle {
// If the angle is special, don't change it. Otherwise clamp it to the valid range.
if c.isSpecial() {
return c
}
return ChordAngle(math.Max(0.0, math.Min(4.0, float64(c)+e)))
}
// Angle converts this ChordAngle to an Angle.
func (c ChordAngle) Angle() Angle {
if c < 0 {
return -1 * Radian
}
if c.isInf() {
return InfAngle()
}
return Angle(2 * math.Asin(0.5*math.Sqrt(float64(c))))
}
// InfChordAngle returns a chord angle larger than any finite chord angle.
// The only valid operations on an InfChordAngle are comparisons and Angle conversions.
func InfChordAngle() ChordAngle {
return ChordAngle(math.Inf(1))
}
// isInf reports whether this ChordAngle is infinite.
func (c ChordAngle) isInf() bool {
return math.IsInf(float64(c), 1)
}
// isSpecial reports whether this ChordAngle is one of the special cases.
func (c ChordAngle) isSpecial() bool {
return c < 0 || c.isInf()
}
// isValid reports whether this ChordAngle is valid or not.
func (c ChordAngle) isValid() bool {
return (c >= 0 && c <= 4) || c.isSpecial()
}
// MaxPointError returns the maximum error size for a ChordAngle constructed
// from 2 Points x and y, assuming that x and y are normalized to within the
// bounds guaranteed by s2.Point.Normalize. The error is defined with respect to
// the true distance after the points are projected to lie exactly on the sphere.
func (c ChordAngle) MaxPointError() float64 {
// There is a relative error of (2.5*dblEpsilon) when computing the squared
// distance, plus an absolute error of (16 * dblEpsilon**2) because the
// lengths of the input points may differ from 1 by up to (2*dblEpsilon) each.
return 2.5*dblEpsilon*float64(c) + 16*dblEpsilon*dblEpsilon
}
// MaxAngleError returns the maximum error for a ChordAngle constructed
// as an Angle distance.
func (c ChordAngle) MaxAngleError() float64 {
return dblEpsilon * float64(c)
}
// Add adds the other ChordAngle to this one and returns the resulting value.
// This method assumes the ChordAngles are not special.
func (c ChordAngle) Add(other ChordAngle) ChordAngle {
// Note that this method (and Sub) is much more efficient than converting
// the ChordAngle to an Angle and adding those and converting back. It
// requires only one square root plus a few additions and multiplications.
// Optimization for the common case where b is an error tolerance
// parameter that happens to be set to zero.
if other == 0 {
return c
}
// Clamp the angle sum to at most 180 degrees.
if c+other >= 4 {
return StraightChordAngle
}
// Let a and b be the (non-squared) chord lengths, and let c = a+b.
// Let A, B, and C be the corresponding half-angles (a = 2*sin(A), etc).
// Then the formula below can be derived from c = 2 * sin(A+B) and the
// relationships sin(A+B) = sin(A)*cos(B) + sin(B)*cos(A)
// cos(X) = sqrt(1 - sin^2(X))
x := float64(c * (1 - 0.25*other))
y := float64(other * (1 - 0.25*c))
return ChordAngle(math.Min(4.0, x+y+2*math.Sqrt(x*y)))
}
// Sub subtracts the other ChordAngle from this one and returns the resulting
// value. This method assumes the ChordAngles are not special.
func (c ChordAngle) Sub(other ChordAngle) ChordAngle {
if other == 0 {
return c
}
if c <= other {
return 0
}
x := float64(c * (1 - 0.25*other))
y := float64(other * (1 - 0.25*c))
return ChordAngle(math.Max(0.0, x+y-2*math.Sqrt(x*y)))
}
// Sin returns the sine of this chord angle. This method is more efficient
// than converting to Angle and performing the computation.
func (c ChordAngle) Sin() float64 {
return math.Sqrt(c.Sin2())
}
// Sin2 returns the square of the sine of this chord angle.
// It is more efficient than Sin.
func (c ChordAngle) Sin2() float64 {
// Let a be the (non-squared) chord length, and let A be the corresponding
// half-angle (a = 2*sin(A)). The formula below can be derived from:
// sin(2*A) = 2 * sin(A) * cos(A)
// cos^2(A) = 1 - sin^2(A)
// This is much faster than converting to an angle and computing its sine.
return float64(c * (1 - 0.25*c))
}
// Cos returns the cosine of this chord angle. This method is more efficient
// than converting to Angle and performing the computation.
func (c ChordAngle) Cos() float64 {
// cos(2*A) = cos^2(A) - sin^2(A) = 1 - 2*sin^2(A)
return float64(1 - 0.5*c)
}
// Tan returns the tangent of this chord angle.
func (c ChordAngle) Tan() float64 {
return c.Sin() / c.Cos()
}