1
0
Fork 0
mirror of https://github.com/Luzifer/staticmap.git synced 2025-01-07 21:41:50 +00:00
staticmap/vendor/github.com/golang/geo/s1/angle.go
Knut Ahlers 759b968510
Vendor dependencies
Signed-off-by: Knut Ahlers <knut@ahlers.me>
2017-06-27 22:50:36 +02:00

119 lines
3.5 KiB
Go

/*
Copyright 2014 Google Inc. All rights reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License.
*/
package s1
import (
"math"
"strconv"
)
// Angle represents a 1D angle. The internal representation is a double precision
// value in radians, so conversion to and from radians is exact.
// Conversions between E5, E6, E7, and Degrees are not always
// exact. For example, Degrees(3.1) is different from E6(3100000) or E7(310000000).
//
// The following conversions between degrees and radians are exact:
//
// Degree*180 == Radian*math.Pi
// Degree*(180/n) == Radian*(math.Pi/n) for n == 0..8
//
// These identities hold when the arguments are scaled up or down by any power
// of 2. Some similar identities are also true, for example,
//
// Degree*60 == Radian*(math.Pi/3)
//
// But be aware that this type of identity does not hold in general. For example,
//
// Degree*3 != Radian*(math.Pi/60)
//
// Similarly, the conversion to radians means that (Angle(x)*Degree).Degrees()
// does not always equal x. For example,
//
// (Angle(45*n)*Degree).Degrees() == 45*n for n == 0..8
//
// but
//
// (60*Degree).Degrees() != 60
//
// When testing for equality, you should allow for numerical errors (floatApproxEq)
// or convert to discrete E5/E6/E7 values first.
type Angle float64
// Angle units.
const (
Radian Angle = 1
Degree = (math.Pi / 180) * Radian
E5 = 1e-5 * Degree
E6 = 1e-6 * Degree
E7 = 1e-7 * Degree
)
// Radians returns the angle in radians.
func (a Angle) Radians() float64 { return float64(a) }
// Degrees returns the angle in degrees.
func (a Angle) Degrees() float64 { return float64(a / Degree) }
// round returns the value rounded to nearest as an int32.
// This does not match C++ exactly for the case of x.5.
func round(val float64) int32 {
if val < 0 {
return int32(val - 0.5)
}
return int32(val + 0.5)
}
// InfAngle returns an angle larger than any finite angle.
func InfAngle() Angle {
return Angle(math.Inf(1))
}
// isInf reports whether this Angle is infinite.
func (a Angle) isInf() bool {
return math.IsInf(float64(a), 0)
}
// E5 returns the angle in hundred thousandths of degrees.
func (a Angle) E5() int32 { return round(a.Degrees() * 1e5) }
// E6 returns the angle in millionths of degrees.
func (a Angle) E6() int32 { return round(a.Degrees() * 1e6) }
// E7 returns the angle in ten millionths of degrees.
func (a Angle) E7() int32 { return round(a.Degrees() * 1e7) }
// Abs returns the absolute value of the angle.
func (a Angle) Abs() Angle { return Angle(math.Abs(float64(a))) }
// Normalized returns an equivalent angle in [0, 2π).
func (a Angle) Normalized() Angle {
rad := math.Mod(float64(a), 2*math.Pi)
if rad < 0 {
rad += 2 * math.Pi
}
return Angle(rad)
}
func (a Angle) String() string {
return strconv.FormatFloat(a.Degrees(), 'f', 7, 64) // like "%.7f"
}
// BUG(dsymonds): The major differences from the C++ version are:
// - no unsigned E5/E6/E7 methods
// - no S2Point or S2LatLng constructors
// - no comparison or arithmetic operators