mirror of
https://github.com/Luzifer/staticmap.git
synced 2025-01-06 13:06:02 +00:00
396 lines
12 KiB
Go
396 lines
12 KiB
Go
// Copyright 2016 Google Inc. All rights reserved.
|
|
//
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
// you may not use this file except in compliance with the License.
|
|
// You may obtain a copy of the License at
|
|
//
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
//
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
// See the License for the specific language governing permissions and
|
|
// limitations under the License.
|
|
|
|
package s2
|
|
|
|
import (
|
|
"fmt"
|
|
"io"
|
|
"math"
|
|
|
|
"github.com/golang/geo/s1"
|
|
)
|
|
|
|
// Polyline represents a sequence of zero or more vertices connected by
|
|
// straight edges (geodesics). Edges of length 0 and 180 degrees are not
|
|
// allowed, i.e. adjacent vertices should not be identical or antipodal.
|
|
type Polyline []Point
|
|
|
|
// PolylineFromLatLngs creates a new Polyline from the given LatLngs.
|
|
func PolylineFromLatLngs(points []LatLng) *Polyline {
|
|
p := make(Polyline, len(points))
|
|
for k, v := range points {
|
|
p[k] = PointFromLatLng(v)
|
|
}
|
|
return &p
|
|
}
|
|
|
|
// Reverse reverses the order of the Polyline vertices.
|
|
func (p *Polyline) Reverse() {
|
|
for i := 0; i < len(*p)/2; i++ {
|
|
(*p)[i], (*p)[len(*p)-i-1] = (*p)[len(*p)-i-1], (*p)[i]
|
|
}
|
|
}
|
|
|
|
// Length returns the length of this Polyline.
|
|
func (p *Polyline) Length() s1.Angle {
|
|
var length s1.Angle
|
|
|
|
for i := 1; i < len(*p); i++ {
|
|
length += (*p)[i-1].Distance((*p)[i])
|
|
}
|
|
return length
|
|
}
|
|
|
|
// Centroid returns the true centroid of the polyline multiplied by the length of the
|
|
// polyline. The result is not unit length, so you may wish to normalize it.
|
|
//
|
|
// Scaling by the Polyline length makes it easy to compute the centroid
|
|
// of several Polylines (by simply adding up their centroids).
|
|
func (p *Polyline) Centroid() Point {
|
|
var centroid Point
|
|
for i := 1; i < len(*p); i++ {
|
|
// The centroid (multiplied by length) is a vector toward the midpoint
|
|
// of the edge, whose length is twice the sin of half the angle between
|
|
// the two vertices. Defining theta to be this angle, we have:
|
|
vSum := (*p)[i-1].Add((*p)[i].Vector) // Length == 2*cos(theta)
|
|
vDiff := (*p)[i-1].Sub((*p)[i].Vector) // Length == 2*sin(theta)
|
|
|
|
// Length == 2*sin(theta)
|
|
centroid = Point{centroid.Add(vSum.Mul(math.Sqrt(vDiff.Norm2() / vSum.Norm2())))}
|
|
}
|
|
return centroid
|
|
}
|
|
|
|
// Equal reports whether the given Polyline is exactly the same as this one.
|
|
func (p *Polyline) Equal(b *Polyline) bool {
|
|
if len(*p) != len(*b) {
|
|
return false
|
|
}
|
|
for i, v := range *p {
|
|
if v != (*b)[i] {
|
|
return false
|
|
}
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// CapBound returns the bounding Cap for this Polyline.
|
|
func (p *Polyline) CapBound() Cap {
|
|
return p.RectBound().CapBound()
|
|
}
|
|
|
|
// RectBound returns the bounding Rect for this Polyline.
|
|
func (p *Polyline) RectBound() Rect {
|
|
rb := NewRectBounder()
|
|
for _, v := range *p {
|
|
rb.AddPoint(v)
|
|
}
|
|
return rb.RectBound()
|
|
}
|
|
|
|
// ContainsCell reports whether this Polyline contains the given Cell. Always returns false
|
|
// because "containment" is not numerically well-defined except at the Polyline vertices.
|
|
func (p *Polyline) ContainsCell(cell Cell) bool {
|
|
return false
|
|
}
|
|
|
|
// IntersectsCell reports whether this Polyline intersects the given Cell.
|
|
func (p *Polyline) IntersectsCell(cell Cell) bool {
|
|
if len(*p) == 0 {
|
|
return false
|
|
}
|
|
|
|
// We only need to check whether the cell contains vertex 0 for correctness,
|
|
// but these tests are cheap compared to edge crossings so we might as well
|
|
// check all the vertices.
|
|
for _, v := range *p {
|
|
if cell.ContainsPoint(v) {
|
|
return true
|
|
}
|
|
}
|
|
|
|
cellVertices := []Point{
|
|
cell.Vertex(0),
|
|
cell.Vertex(1),
|
|
cell.Vertex(2),
|
|
cell.Vertex(3),
|
|
}
|
|
|
|
for j := 0; j < 4; j++ {
|
|
crosser := NewChainEdgeCrosser(cellVertices[j], cellVertices[(j+1)&3], (*p)[0])
|
|
for i := 1; i < len(*p); i++ {
|
|
if crosser.ChainCrossingSign((*p)[i]) != DoNotCross {
|
|
// There is a proper crossing, or two vertices were the same.
|
|
return true
|
|
}
|
|
}
|
|
}
|
|
return false
|
|
}
|
|
|
|
// ContainsPoint returns false since Polylines are not closed.
|
|
func (p *Polyline) ContainsPoint(point Point) bool {
|
|
return false
|
|
}
|
|
|
|
// CellUnionBound computes a covering of the Polyline.
|
|
func (p *Polyline) CellUnionBound() []CellID {
|
|
return p.CapBound().CellUnionBound()
|
|
}
|
|
|
|
// NumEdges returns the number of edges in this shape.
|
|
func (p *Polyline) NumEdges() int {
|
|
if len(*p) == 0 {
|
|
return 0
|
|
}
|
|
return len(*p) - 1
|
|
}
|
|
|
|
// Edge returns endpoints for the given edge index.
|
|
func (p *Polyline) Edge(i int) Edge {
|
|
return Edge{(*p)[i], (*p)[i+1]}
|
|
}
|
|
|
|
// HasInterior returns false as Polylines are not closed.
|
|
func (p *Polyline) HasInterior() bool {
|
|
return false
|
|
}
|
|
|
|
// ReferencePoint returns the default reference point with negative containment because Polylines are not closed.
|
|
func (p *Polyline) ReferencePoint() ReferencePoint {
|
|
return OriginReferencePoint(false)
|
|
}
|
|
|
|
// NumChains reports the number of contiguous edge chains in this Polyline.
|
|
func (p *Polyline) NumChains() int {
|
|
return minInt(1, p.NumEdges())
|
|
}
|
|
|
|
// Chain returns the i-th edge Chain in the Shape.
|
|
func (p *Polyline) Chain(chainID int) Chain {
|
|
return Chain{0, p.NumEdges()}
|
|
}
|
|
|
|
// ChainEdge returns the j-th edge of the i-th edge Chain.
|
|
func (p *Polyline) ChainEdge(chainID, offset int) Edge {
|
|
return Edge{(*p)[offset], (*p)[offset+1]}
|
|
}
|
|
|
|
// ChainPosition returns a pair (i, j) such that edgeID is the j-th edge
|
|
func (p *Polyline) ChainPosition(edgeID int) ChainPosition {
|
|
return ChainPosition{0, edgeID}
|
|
}
|
|
|
|
// dimension returns the dimension of the geometry represented by this Polyline.
|
|
func (p *Polyline) dimension() dimension { return polylineGeometry }
|
|
|
|
// IsEmpty reports whether this shape contains no points.
|
|
func (p *Polyline) IsEmpty() bool { return defaultShapeIsEmpty(p) }
|
|
|
|
// IsFull reports whether this shape contains all points on the sphere.
|
|
func (p *Polyline) IsFull() bool { return defaultShapeIsFull(p) }
|
|
|
|
// findEndVertex reports the maximal end index such that the line segment between
|
|
// the start index and this one such that the line segment between these two
|
|
// vertices passes within the given tolerance of all interior vertices, in order.
|
|
func findEndVertex(p Polyline, tolerance s1.Angle, index int) int {
|
|
// The basic idea is to keep track of the "pie wedge" of angles
|
|
// from the starting vertex such that a ray from the starting
|
|
// vertex at that angle will pass through the discs of radius
|
|
// tolerance centered around all vertices processed so far.
|
|
//
|
|
// First we define a coordinate frame for the tangent and normal
|
|
// spaces at the starting vertex. Essentially this means picking
|
|
// three orthonormal vectors X,Y,Z such that X and Y span the
|
|
// tangent plane at the starting vertex, and Z is up. We use
|
|
// the coordinate frame to define a mapping from 3D direction
|
|
// vectors to a one-dimensional ray angle in the range (-π,
|
|
// π]. The angle of a direction vector is computed by
|
|
// transforming it into the X,Y,Z basis, and then calculating
|
|
// atan2(y,x). This mapping allows us to represent a wedge of
|
|
// angles as a 1D interval. Since the interval wraps around, we
|
|
// represent it as an Interval, i.e. an interval on the unit
|
|
// circle.
|
|
origin := p[index]
|
|
frame := getFrame(origin)
|
|
|
|
// As we go along, we keep track of the current wedge of angles
|
|
// and the distance to the last vertex (which must be
|
|
// non-decreasing).
|
|
currentWedge := s1.FullInterval()
|
|
var lastDistance s1.Angle
|
|
|
|
for index++; index < len(p); index++ {
|
|
candidate := p[index]
|
|
distance := origin.Distance(candidate)
|
|
|
|
// We don't allow simplification to create edges longer than
|
|
// 90 degrees, to avoid numeric instability as lengths
|
|
// approach 180 degrees. We do need to allow for original
|
|
// edges longer than 90 degrees, though.
|
|
if distance > math.Pi/2 && lastDistance > 0 {
|
|
break
|
|
}
|
|
|
|
// Vertices must be in increasing order along the ray, except
|
|
// for the initial disc around the origin.
|
|
if distance < lastDistance && lastDistance > tolerance {
|
|
break
|
|
}
|
|
|
|
lastDistance = distance
|
|
|
|
// Points that are within the tolerance distance of the origin
|
|
// do not constrain the ray direction, so we can ignore them.
|
|
if distance <= tolerance {
|
|
continue
|
|
}
|
|
|
|
// If the current wedge of angles does not contain the angle
|
|
// to this vertex, then stop right now. Note that the wedge
|
|
// of possible ray angles is not necessarily empty yet, but we
|
|
// can't continue unless we are willing to backtrack to the
|
|
// last vertex that was contained within the wedge (since we
|
|
// don't create new vertices). This would be more complicated
|
|
// and also make the worst-case running time more than linear.
|
|
direction := toFrame(frame, candidate)
|
|
center := math.Atan2(direction.Y, direction.X)
|
|
if !currentWedge.Contains(center) {
|
|
break
|
|
}
|
|
|
|
// To determine how this vertex constrains the possible ray
|
|
// angles, consider the triangle ABC where A is the origin, B
|
|
// is the candidate vertex, and C is one of the two tangent
|
|
// points between A and the spherical cap of radius
|
|
// tolerance centered at B. Then from the spherical law of
|
|
// sines, sin(a)/sin(A) = sin(c)/sin(C), where a and c are
|
|
// the lengths of the edges opposite A and C. In our case C
|
|
// is a 90 degree angle, therefore A = asin(sin(a) / sin(c)).
|
|
// Angle A is the half-angle of the allowable wedge.
|
|
halfAngle := math.Asin(math.Sin(tolerance.Radians()) / math.Sin(distance.Radians()))
|
|
target := s1.IntervalFromPointPair(center, center).Expanded(halfAngle)
|
|
currentWedge = currentWedge.Intersection(target)
|
|
}
|
|
|
|
// We break out of the loop when we reach a vertex index that
|
|
// can't be included in the line segment, so back up by one
|
|
// vertex.
|
|
return index - 1
|
|
}
|
|
|
|
// SubsampleVertices returns a subsequence of vertex indices such that the
|
|
// polyline connecting these vertices is never further than the given tolerance from
|
|
// the original polyline. Provided the first and last vertices are distinct,
|
|
// they are always preserved; if they are not, the subsequence may contain
|
|
// only a single index.
|
|
//
|
|
// Some useful properties of the algorithm:
|
|
//
|
|
// - It runs in linear time.
|
|
//
|
|
// - The output always represents a valid polyline. In particular, adjacent
|
|
// output vertices are never identical or antipodal.
|
|
//
|
|
// - The method is not optimal, but it tends to produce 2-3% fewer
|
|
// vertices than the Douglas-Peucker algorithm with the same tolerance.
|
|
//
|
|
// - The output is parametrically equivalent to the original polyline to
|
|
// within the given tolerance. For example, if a polyline backtracks on
|
|
// itself and then proceeds onwards, the backtracking will be preserved
|
|
// (to within the given tolerance). This is different than the
|
|
// Douglas-Peucker algorithm which only guarantees geometric equivalence.
|
|
func (p *Polyline) SubsampleVertices(tolerance s1.Angle) []int {
|
|
var result []int
|
|
|
|
if len(*p) < 1 {
|
|
return result
|
|
}
|
|
|
|
result = append(result, 0)
|
|
clampedTolerance := s1.Angle(math.Max(tolerance.Radians(), 0))
|
|
|
|
for index := 0; index+1 < len(*p); {
|
|
nextIndex := findEndVertex(*p, clampedTolerance, index)
|
|
// Don't create duplicate adjacent vertices.
|
|
if (*p)[nextIndex] != (*p)[index] {
|
|
result = append(result, nextIndex)
|
|
}
|
|
index = nextIndex
|
|
}
|
|
|
|
return result
|
|
}
|
|
|
|
// Encode encodes the Polyline.
|
|
func (p Polyline) Encode(w io.Writer) error {
|
|
e := &encoder{w: w}
|
|
p.encode(e)
|
|
return e.err
|
|
}
|
|
|
|
func (p Polyline) encode(e *encoder) {
|
|
e.writeInt8(encodingVersion)
|
|
e.writeUint32(uint32(len(p)))
|
|
for _, v := range p {
|
|
e.writeFloat64(v.X)
|
|
e.writeFloat64(v.Y)
|
|
e.writeFloat64(v.Z)
|
|
}
|
|
}
|
|
|
|
// Decode decodes the polyline.
|
|
func (p *Polyline) Decode(r io.Reader) error {
|
|
d := decoder{r: asByteReader(r)}
|
|
p.decode(d)
|
|
return d.err
|
|
}
|
|
|
|
func (p *Polyline) decode(d decoder) {
|
|
version := d.readInt8()
|
|
if d.err != nil {
|
|
return
|
|
}
|
|
if int(version) != int(encodingVersion) {
|
|
d.err = fmt.Errorf("can't decode version %d; my version: %d", version, encodingVersion)
|
|
return
|
|
}
|
|
nvertices := d.readUint32()
|
|
if d.err != nil {
|
|
return
|
|
}
|
|
if nvertices > maxEncodedVertices {
|
|
d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices)
|
|
return
|
|
}
|
|
*p = make([]Point, nvertices)
|
|
for i := range *p {
|
|
(*p)[i].X = d.readFloat64()
|
|
(*p)[i].Y = d.readFloat64()
|
|
(*p)[i].Z = d.readFloat64()
|
|
}
|
|
}
|
|
|
|
// TODO(roberts): Differences from C++.
|
|
// IsValid
|
|
// Suffix
|
|
// Interpolate/UnInterpolate
|
|
// Project
|
|
// IsPointOnRight
|
|
// Intersects(Polyline)
|
|
// Reverse
|
|
// ApproxEqual
|
|
// NearlyCoversPolyline
|