// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "fmt" "io" "math" "sort" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) // Point represents a point on the unit sphere as a normalized 3D vector. // Fields should be treated as read-only. Use one of the factory methods for creation. type Point struct { r3.Vector } // sortPoints sorts the slice of Points in place. func sortPoints(e []Point) { sort.Sort(points(e)) } // points implements the Sort interface for slices of Point. type points []Point func (p points) Len() int { return len(p) } func (p points) Swap(i, j int) { p[i], p[j] = p[j], p[i] } func (p points) Less(i, j int) bool { return p[i].Cmp(p[j].Vector) == -1 } // PointFromCoords creates a new normalized point from coordinates. // // This always returns a valid point. If the given coordinates can not be normalized // the origin point will be returned. // // This behavior is different from the C++ construction of a S2Point from coordinates // (i.e. S2Point(x, y, z)) in that in C++ they do not Normalize. func PointFromCoords(x, y, z float64) Point { if x == 0 && y == 0 && z == 0 { return OriginPoint() } return Point{r3.Vector{x, y, z}.Normalize()} } // OriginPoint returns a unique "origin" on the sphere for operations that need a fixed // reference point. In particular, this is the "point at infinity" used for // point-in-polygon testing (by counting the number of edge crossings). // // It should *not* be a point that is commonly used in edge tests in order // to avoid triggering code to handle degenerate cases (this rules out the // north and south poles). It should also not be on the boundary of any // low-level S2Cell for the same reason. func OriginPoint() Point { return Point{r3.Vector{-0.0099994664350250197, 0.0025924542609324121, 0.99994664350250195}} } // PointCross returns a Point that is orthogonal to both p and op. This is similar to // p.Cross(op) (the true cross product) except that it does a better job of // ensuring orthogonality when the Point is nearly parallel to op, it returns // a non-zero result even when p == op or p == -op and the result is a Point. // // It satisfies the following properties (f == PointCross): // // (1) f(p, op) != 0 for all p, op // (2) f(op,p) == -f(p,op) unless p == op or p == -op // (3) f(-p,op) == -f(p,op) unless p == op or p == -op // (4) f(p,-op) == -f(p,op) unless p == op or p == -op func (p Point) PointCross(op Point) Point { // NOTE(dnadasi): In the C++ API the equivalent method here was known as "RobustCrossProd", // but PointCross more accurately describes how this method is used. x := p.Add(op.Vector).Cross(op.Sub(p.Vector)) // Compare exactly to the 0 vector. if x == (r3.Vector{}) { // The only result that makes sense mathematically is to return zero, but // we find it more convenient to return an arbitrary orthogonal vector. return Point{p.Ortho()} } return Point{x} } // OrderedCCW returns true if the edges OA, OB, and OC are encountered in that // order while sweeping CCW around the point O. // // You can think of this as testing whether A <= B <= C with respect to the // CCW ordering around O that starts at A, or equivalently, whether B is // contained in the range of angles (inclusive) that starts at A and extends // CCW to C. Properties: // // (1) If OrderedCCW(a,b,c,o) && OrderedCCW(b,a,c,o), then a == b // (2) If OrderedCCW(a,b,c,o) && OrderedCCW(a,c,b,o), then b == c // (3) If OrderedCCW(a,b,c,o) && OrderedCCW(c,b,a,o), then a == b == c // (4) If a == b or b == c, then OrderedCCW(a,b,c,o) is true // (5) Otherwise if a == c, then OrderedCCW(a,b,c,o) is false func OrderedCCW(a, b, c, o Point) bool { sum := 0 if RobustSign(b, o, a) != Clockwise { sum++ } if RobustSign(c, o, b) != Clockwise { sum++ } if RobustSign(a, o, c) == CounterClockwise { sum++ } return sum >= 2 } // Distance returns the angle between two points. func (p Point) Distance(b Point) s1.Angle { return p.Vector.Angle(b.Vector) } // ApproxEqual reports whether the two points are similar enough to be equal. func (p Point) ApproxEqual(other Point) bool { return p.Vector.Angle(other.Vector) <= s1.Angle(epsilon) } // ChordAngleBetweenPoints constructs a ChordAngle corresponding to the distance // between the two given points. The points must be unit length. func ChordAngleBetweenPoints(x, y Point) s1.ChordAngle { return s1.ChordAngle(math.Min(4.0, x.Sub(y.Vector).Norm2())) } // regularPoints generates a slice of points shaped as a regular polygon with // the numVertices vertices, all located on a circle of the specified angular radius // around the center. The radius is the actual distance from center to each vertex. func regularPoints(center Point, radius s1.Angle, numVertices int) []Point { return regularPointsForFrame(getFrame(center), radius, numVertices) } // regularPointsForFrame generates a slice of points shaped as a regular polygon // with numVertices vertices, all on a circle of the specified angular radius around // the center. The radius is the actual distance from the center to each vertex. func regularPointsForFrame(frame matrix3x3, radius s1.Angle, numVertices int) []Point { // We construct the loop in the given frame coordinates, with the center at // (0, 0, 1). For a loop of radius r, the loop vertices have the form // (x, y, z) where x^2 + y^2 = sin(r) and z = cos(r). The distance on the // sphere (arc length) from each vertex to the center is acos(cos(r)) = r. z := math.Cos(radius.Radians()) r := math.Sin(radius.Radians()) radianStep := 2 * math.Pi / float64(numVertices) var vertices []Point for i := 0; i < numVertices; i++ { angle := float64(i) * radianStep p := Point{r3.Vector{r * math.Cos(angle), r * math.Sin(angle), z}} vertices = append(vertices, Point{fromFrame(frame, p).Normalize()}) } return vertices } // CapBound returns a bounding cap for this point. func (p Point) CapBound() Cap { return CapFromPoint(p) } // RectBound returns a bounding latitude-longitude rectangle from this point. func (p Point) RectBound() Rect { return RectFromLatLng(LatLngFromPoint(p)) } // ContainsCell returns false as Points do not contain any other S2 types. func (p Point) ContainsCell(c Cell) bool { return false } // IntersectsCell reports whether this Point intersects the given cell. func (p Point) IntersectsCell(c Cell) bool { return c.ContainsPoint(p) } // ContainsPoint reports if this Point contains the other Point. // (This method is named to satisfy the Region interface.) func (p Point) ContainsPoint(other Point) bool { return p.Contains(other) } // CellUnionBound computes a covering of the Point. func (p Point) CellUnionBound() []CellID { return p.CapBound().CellUnionBound() } // Contains reports if this Point contains the other Point. // (This method matches all other s2 types where the reflexive Contains // method does not contain the type's name.) func (p Point) Contains(other Point) bool { return p == other } // Encode encodes the Point. func (p Point) Encode(w io.Writer) error { e := &encoder{w: w} p.encode(e) return e.err } func (p Point) encode(e *encoder) { e.writeInt8(encodingVersion) e.writeFloat64(p.X) e.writeFloat64(p.Y) e.writeFloat64(p.Z) } // Decode decodes the Point. func (p *Point) Decode(r io.Reader) error { d := &decoder{r: asByteReader(r)} p.decode(d) return d.err } func (p *Point) decode(d *decoder) { version := d.readInt8() if d.err != nil { return } if version != encodingVersion { d.err = fmt.Errorf("only version %d is supported", encodingVersion) return } p.X = d.readFloat64() p.Y = d.readFloat64() p.Z = d.readFloat64() } // Rotate the given point about the given axis by the given angle. p and // axis must be unit length; angle has no restrictions (e.g., it can be // positive, negative, greater than 360 degrees, etc). func Rotate(p, axis Point, angle s1.Angle) Point { // Let M be the plane through P that is perpendicular to axis, and let // center be the point where M intersects axis. We construct a // right-handed orthogonal frame (dx, dy, center) such that dx is the // vector from center to P, and dy has the same length as dx. The // result can then be expressed as (cos(angle)*dx + sin(angle)*dy + center). center := axis.Mul(p.Dot(axis.Vector)) dx := p.Sub(center) dy := axis.Cross(p.Vector) // Mathematically the result is unit length, but normalization is necessary // to ensure that numerical errors don't accumulate. return Point{dx.Mul(math.Cos(angle.Radians())).Add(dy.Mul(math.Sin(angle.Radians()))).Add(center).Normalize()} }