// Copyright 2015 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 import ( "fmt" "io" "math" "github.com/golang/geo/r1" "github.com/golang/geo/r3" "github.com/golang/geo/s1" ) // Loop represents a simple spherical polygon. It consists of a sequence // of vertices where the first vertex is implicitly connected to the // last. All loops are defined to have a CCW orientation, i.e. the interior of // the loop is on the left side of the edges. This implies that a clockwise // loop enclosing a small area is interpreted to be a CCW loop enclosing a // very large area. // // Loops are not allowed to have any duplicate vertices (whether adjacent or // not). Non-adjacent edges are not allowed to intersect, and furthermore edges // of length 180 degrees are not allowed (i.e., adjacent vertices cannot be // antipodal). Loops must have at least 3 vertices (except for the "empty" and // "full" loops discussed below). // // There are two special loops: the "empty" loop contains no points and the // "full" loop contains all points. These loops do not have any edges, but to // preserve the invariant that every loop can be represented as a vertex // chain, they are defined as having exactly one vertex each (see EmptyLoop // and FullLoop). type Loop struct { vertices []Point // originInside keeps a precomputed value whether this loop contains the origin // versus computing from the set of vertices every time. originInside bool // depth is the nesting depth of this Loop if it is contained by a Polygon // or other shape and is used to determine if this loop represents a hole // or a filled in portion. depth int // bound is a conservative bound on all points contained by this loop. // If l.ContainsPoint(P), then l.bound.ContainsPoint(P). bound Rect // Since bound is not exact, it is possible that a loop A contains // another loop B whose bounds are slightly larger. subregionBound // has been expanded sufficiently to account for this error, i.e. // if A.Contains(B), then A.subregionBound.Contains(B.bound). subregionBound Rect // index is the spatial index for this Loop. index *ShapeIndex } // LoopFromPoints constructs a loop from the given points. func LoopFromPoints(pts []Point) *Loop { l := &Loop{ vertices: pts, } l.initOriginAndBound() return l } // LoopFromCell constructs a loop corresponding to the given cell. // // Note that the loop and cell *do not* contain exactly the same set of // points, because Loop and Cell have slightly different definitions of // point containment. For example, a Cell vertex is contained by all // four neighboring Cells, but it is contained by exactly one of four // Loops constructed from those cells. As another example, the cell // coverings of cell and LoopFromCell(cell) will be different, because the // loop contains points on its boundary that actually belong to other cells // (i.e., the covering will include a layer of neighboring cells). func LoopFromCell(c Cell) *Loop { l := &Loop{ vertices: []Point{ c.Vertex(0), c.Vertex(1), c.Vertex(2), c.Vertex(3), }, } l.initOriginAndBound() return l } // These two points are used for the special Empty and Full loops. var ( emptyLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: 1}} fullLoopPoint = Point{r3.Vector{X: 0, Y: 0, Z: -1}} ) // EmptyLoop returns a special "empty" loop. func EmptyLoop() *Loop { return LoopFromPoints([]Point{emptyLoopPoint}) } // FullLoop returns a special "full" loop. func FullLoop() *Loop { return LoopFromPoints([]Point{fullLoopPoint}) } // initOriginAndBound sets the origin containment for the given point and then calls // the initialization for the bounds objects and the internal index. func (l *Loop) initOriginAndBound() { if len(l.vertices) < 3 { // Check for the special "empty" and "full" loops (which have one vertex). if !l.isEmptyOrFull() { l.originInside = false return } // This is the special empty or full loop, so the origin depends on if // the vertex is in the southern hemisphere or not. l.originInside = l.vertices[0].Z < 0 } else { // Point containment testing is done by counting edge crossings starting // at a fixed point on the sphere (OriginPoint). We need to know whether // the reference point (OriginPoint) is inside or outside the loop before // we can construct the ShapeIndex. We do this by first guessing that // it is outside, and then seeing whether we get the correct containment // result for vertex 1. If the result is incorrect, the origin must be // inside the loop. // // A loop with consecutive vertices A,B,C contains vertex B if and only if // the fixed vector R = B.Ortho is contained by the wedge ABC. The // wedge is closed at A and open at C, i.e. the point B is inside the loop // if A = R but not if C = R. This convention is required for compatibility // with VertexCrossing. (Note that we can't use OriginPoint // as the fixed vector because of the possibility that B == OriginPoint.) l.originInside = false v1Inside := OrderedCCW(Point{l.vertices[1].Ortho()}, l.vertices[0], l.vertices[2], l.vertices[1]) if v1Inside != l.ContainsPoint(l.vertices[1]) { l.originInside = true } } // We *must* call initBound before initializing the index, because // initBound calls ContainsPoint which does a bounds check before using // the index. l.initBound() // Create a new index and add us to it. l.index = NewShapeIndex() l.index.Add(l) } // initBound sets up the approximate bounding Rects for this loop. func (l *Loop) initBound() { // Check for the special "empty" and "full" loops. if l.isEmptyOrFull() { if l.IsEmpty() { l.bound = EmptyRect() } else { l.bound = FullRect() } l.subregionBound = l.bound return } // The bounding rectangle of a loop is not necessarily the same as the // bounding rectangle of its vertices. First, the maximal latitude may be // attained along the interior of an edge. Second, the loop may wrap // entirely around the sphere (e.g. a loop that defines two revolutions of a // candy-cane stripe). Third, the loop may include one or both poles. // Note that a small clockwise loop near the equator contains both poles. bounder := NewRectBounder() for i := 0; i <= len(l.vertices); i++ { // add vertex 0 twice bounder.AddPoint(l.Vertex(i)) } b := bounder.RectBound() if l.ContainsPoint(Point{r3.Vector{0, 0, 1}}) { b = Rect{r1.Interval{b.Lat.Lo, math.Pi / 2}, s1.FullInterval()} } // If a loop contains the south pole, then either it wraps entirely // around the sphere (full longitude range), or it also contains the // north pole in which case b.Lng.IsFull() due to the test above. // Either way, we only need to do the south pole containment test if // b.Lng.IsFull(). if b.Lng.IsFull() && l.ContainsPoint(Point{r3.Vector{0, 0, -1}}) { b.Lat.Lo = -math.Pi / 2 } l.bound = b l.subregionBound = ExpandForSubregions(l.bound) } // Validate checks whether this is a valid loop. func (l *Loop) Validate() error { if err := l.findValidationErrorNoIndex(); err != nil { return err } // Check for intersections between non-adjacent edges (including at vertices) // TODO(roberts): Once shapeutil gets findAnyCrossing uncomment this. // return findAnyCrossing(l.index) return nil } // findValidationErrorNoIndex reports whether this is not a valid loop, but // skips checks that would require a ShapeIndex to be built for the loop. This // is primarily used by Polygon to do validation so it doesn't trigger the // creation of unneeded ShapeIndices. func (l *Loop) findValidationErrorNoIndex() error { // All vertices must be unit length. for i, v := range l.vertices { if !v.IsUnit() { return fmt.Errorf("vertex %d is not unit length", i) } } // Loops must have at least 3 vertices (except for empty and full). if len(l.vertices) < 3 { if l.isEmptyOrFull() { return nil // Skip remaining tests. } return fmt.Errorf("non-empty, non-full loops must have at least 3 vertices") } // Loops are not allowed to have any duplicate vertices or edge crossings. // We split this check into two parts. First we check that no edge is // degenerate (identical endpoints). Then we check that there are no // intersections between non-adjacent edges (including at vertices). The // second check needs the ShapeIndex, so it does not fall within the scope // of this method. for i, v := range l.vertices { if v == l.Vertex(i+1) { return fmt.Errorf("edge %d is degenerate (duplicate vertex)", i) } // Antipodal vertices are not allowed. if other := (Point{l.Vertex(i + 1).Mul(-1)}); v == other { return fmt.Errorf("vertices %d and %d are antipodal", i, (i+1)%len(l.vertices)) } } return nil } // Contains reports whether the region contained by this loop is a superset of the // region contained by the given other loop. func (l *Loop) Contains(o *Loop) bool { // For a loop A to contain the loop B, all of the following must // be true: // // (1) There are no edge crossings between A and B except at vertices. // // (2) At every vertex that is shared between A and B, the local edge // ordering implies that A contains B. // // (3) If there are no shared vertices, then A must contain a vertex of B // and B must not contain a vertex of A. (An arbitrary vertex may be // chosen in each case.) // // The second part of (3) is necessary to detect the case of two loops whose // union is the entire sphere, i.e. two loops that contains each other's // boundaries but not each other's interiors. if !l.subregionBound.Contains(o.bound) { return false } // Special cases to handle either loop being empty or full. if l.isEmptyOrFull() || o.isEmptyOrFull() { return l.IsFull() || o.IsEmpty() } // Check whether there are any edge crossings, and also check the loop // relationship at any shared vertices. relation := &containsRelation{} if hasCrossingRelation(l, o, relation) { return false } // There are no crossings, and if there are any shared vertices then A // contains B locally at each shared vertex. if relation.foundSharedVertex { return true } // Since there are no edge intersections or shared vertices, we just need to // test condition (3) above. We can skip this test if we discovered that A // contains at least one point of B while checking for edge crossings. if !l.ContainsPoint(o.Vertex(0)) { return false } // We still need to check whether (A union B) is the entire sphere. // Normally this check is very cheap due to the bounding box precondition. if (o.subregionBound.Contains(l.bound) || o.bound.Union(l.bound).IsFull()) && o.ContainsPoint(l.Vertex(0)) { return false } return true } // Intersects reports whether the region contained by this loop intersects the region // contained by the other loop. func (l *Loop) Intersects(o *Loop) bool { // Given two loops, A and B, A.Intersects(B) if and only if !A.Complement().Contains(B). // // This code is similar to Contains, but is optimized for the case // where both loops enclose less than half of the sphere. if !l.bound.Intersects(o.bound) { return false } // Check whether there are any edge crossings, and also check the loop // relationship at any shared vertices. relation := &intersectsRelation{} if hasCrossingRelation(l, o, relation) { return true } if relation.foundSharedVertex { return false } // Since there are no edge intersections or shared vertices, the loops // intersect only if A contains B, B contains A, or the two loops contain // each other's boundaries. These checks are usually cheap because of the // bounding box preconditions. Note that neither loop is empty (because of // the bounding box check above), so it is safe to access vertex(0). // Check whether A contains B, or A and B contain each other's boundaries. // (Note that A contains all the vertices of B in either case.) if l.subregionBound.Contains(o.bound) || l.bound.Union(o.bound).IsFull() { if l.ContainsPoint(o.Vertex(0)) { return true } } // Check whether B contains A. if o.subregionBound.Contains(l.bound) { if o.ContainsPoint(l.Vertex(0)) { return true } } return false } // BoundaryEqual reports whether the two loops have the same boundary. This is // true if and only if the loops have the same vertices in the same cyclic order // (i.e., the vertices may be cyclically rotated). The empty and full loops are // considered to have different boundaries. func (l *Loop) BoundaryEqual(o *Loop) bool { if len(l.vertices) != len(o.vertices) { return false } // Special case to handle empty or full loops. Since they have the same // number of vertices, if one loop is empty/full then so is the other. if l.isEmptyOrFull() { return l.IsEmpty() == o.IsEmpty() } // Loop through the vertices to find the first of ours that matches the // starting vertex of the other loop. Use that offset to then 'align' the // vertices for comparison. for offset, vertex := range l.vertices { if vertex == o.Vertex(0) { // There is at most one starting offset since loop vertices are unique. for i := 0; i < len(l.vertices); i++ { if l.Vertex(i+offset) != o.Vertex(i) { return false } } return true } } return false } // compareBoundary returns +1 if this loop contains the boundary of the other loop, // -1 if it excludes the boundary of the other, and 0 if the boundaries of the two // loops cross. Shared edges are handled as follows: // // If XY is a shared edge, define Reversed(XY) to be true if XY // appears in opposite directions in both loops. // Then this loop contains XY if and only if Reversed(XY) == the other loop is a hole. // (Intuitively, this checks whether this loop contains a vanishingly small region // extending from the boundary of the other toward the interior of the polygon to // which the other belongs.) // // This function is used for testing containment and intersection of // multi-loop polygons. Note that this method is not symmetric, since the // result depends on the direction of this loop but not on the direction of // the other loop (in the absence of shared edges). // // This requires that neither loop is empty, and if other loop IsFull, then it must not // be a hole. func (l *Loop) compareBoundary(o *Loop) int { // The bounds must intersect for containment or crossing. if !l.bound.Intersects(o.bound) { return -1 } // Full loops are handled as though the loop surrounded the entire sphere. if l.IsFull() { return 1 } if o.IsFull() { return -1 } // Check whether there are any edge crossings, and also check the loop // relationship at any shared vertices. relation := newCompareBoundaryRelation(o.IsHole()) if hasCrossingRelation(l, o, relation) { return 0 } if relation.foundSharedVertex { if relation.containsEdge { return 1 } return -1 } // There are no edge intersections or shared vertices, so we can check // whether A contains an arbitrary vertex of B. if l.ContainsPoint(o.Vertex(0)) { return 1 } return -1 } // ContainsOrigin reports true if this loop contains s2.OriginPoint(). func (l *Loop) ContainsOrigin() bool { return l.originInside } // ReferencePoint returns the reference point for this loop. func (l *Loop) ReferencePoint() ReferencePoint { return OriginReferencePoint(l.originInside) } // HasInterior returns true because all loops have an interior. func (l *Loop) HasInterior() bool { return true } // NumEdges returns the number of edges in this shape. func (l *Loop) NumEdges() int { if l.isEmptyOrFull() { return 0 } return len(l.vertices) } // Edge returns the endpoints for the given edge index. func (l *Loop) Edge(i int) Edge { return Edge{l.Vertex(i), l.Vertex(i + 1)} } // NumChains reports the number of contiguous edge chains in the Loop. func (l *Loop) NumChains() int { if l.IsEmpty() { return 0 } return 1 } // Chain returns the i-th edge chain in the Shape. func (l *Loop) Chain(chainID int) Chain { return Chain{0, l.NumEdges()} } // ChainEdge returns the j-th edge of the i-th edge chain. func (l *Loop) ChainEdge(chainID, offset int) Edge { return Edge{l.Vertex(offset), l.Vertex(offset + 1)} } // ChainPosition returns a ChainPosition pair (i, j) such that edgeID is the // j-th edge of the Loop. func (l *Loop) ChainPosition(edgeID int) ChainPosition { return ChainPosition{0, edgeID} } // dimension returns the dimension of the geometry represented by this Loop. func (l *Loop) dimension() dimension { return polygonGeometry } // IsEmpty reports true if this is the special empty loop that contains no points. func (l *Loop) IsEmpty() bool { return l.isEmptyOrFull() && !l.ContainsOrigin() } // IsFull reports true if this is the special full loop that contains all points. func (l *Loop) IsFull() bool { return l.isEmptyOrFull() && l.ContainsOrigin() } // isEmptyOrFull reports true if this loop is either the "empty" or "full" special loops. func (l *Loop) isEmptyOrFull() bool { return len(l.vertices) == 1 } // Vertices returns the vertices in the loop. func (l *Loop) Vertices() []Point { return l.vertices } // RectBound returns a tight bounding rectangle. If the loop contains the point, // the bound also contains it. func (l *Loop) RectBound() Rect { return l.bound } // CapBound returns a bounding cap that may have more padding than the corresponding // RectBound. The bound is conservative such that if the loop contains a point P, // the bound also contains it. func (l *Loop) CapBound() Cap { return l.bound.CapBound() } // Vertex returns the vertex for the given index. For convenience, the vertex indices // wrap automatically for methods that do index math such as Edge. // i.e., Vertex(NumEdges() + n) is the same as Vertex(n). func (l *Loop) Vertex(i int) Point { return l.vertices[i%len(l.vertices)] } // OrientedVertex returns the vertex in reverse order if the loop represents a polygon // hole. For example, arguments 0, 1, 2 are mapped to vertices n-1, n-2, n-3, where // n == len(vertices). This ensures that the interior of the polygon is always to // the left of the vertex chain. // // This requires: 0 <= i < 2 * len(vertices) func (l *Loop) OrientedVertex(i int) Point { j := i - len(l.vertices) if j < 0 { j = i } if l.IsHole() { j = len(l.vertices) - 1 - j } return l.Vertex(i) } // NumVertices returns the number of vertices in this loop. func (l *Loop) NumVertices() int { return len(l.vertices) } // bruteForceContainsPoint reports if the given point is contained by this loop. // This method does not use the ShapeIndex, so it is only preferable below a certain // size of loop. func (l *Loop) bruteForceContainsPoint(p Point) bool { origin := OriginPoint() inside := l.originInside crosser := NewChainEdgeCrosser(origin, p, l.Vertex(0)) for i := 1; i <= len(l.vertices); i++ { // add vertex 0 twice inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(i)) } return inside } // ContainsPoint returns true if the loop contains the point. func (l *Loop) ContainsPoint(p Point) bool { // Empty and full loops don't need a special case, but invalid loops with // zero vertices do, so we might as well handle them all at once. if len(l.vertices) < 3 { return l.originInside } // For small loops, and during initial construction, it is faster to just // check all the crossing. const maxBruteForceVertices = 32 if len(l.vertices) < maxBruteForceVertices || l.index == nil { return l.bruteForceContainsPoint(p) } // Otherwise, look up the point in the index. it := l.index.Iterator() if !it.LocatePoint(p) { return false } return l.iteratorContainsPoint(it, p) } // ContainsCell reports whether the given Cell is contained by this Loop. func (l *Loop) ContainsCell(target Cell) bool { it := l.index.Iterator() relation := it.LocateCellID(target.ID()) // If "target" is disjoint from all index cells, it is not contained. // Similarly, if "target" is subdivided into one or more index cells then it // is not contained, since index cells are subdivided only if they (nearly) // intersect a sufficient number of edges. (But note that if "target" itself // is an index cell then it may be contained, since it could be a cell with // no edges in the loop interior.) if relation != Indexed { return false } // Otherwise check if any edges intersect "target". if l.boundaryApproxIntersects(it, target) { return false } // Otherwise check if the loop contains the center of "target". return l.iteratorContainsPoint(it, target.Center()) } // IntersectsCell reports whether this Loop intersects the given cell. func (l *Loop) IntersectsCell(target Cell) bool { it := l.index.Iterator() relation := it.LocateCellID(target.ID()) // If target does not overlap any index cell, there is no intersection. if relation == Disjoint { return false } // If target is subdivided into one or more index cells, there is an // intersection to within the ShapeIndex error bound (see Contains). if relation == Subdivided { return true } // If target is an index cell, there is an intersection because index cells // are created only if they have at least one edge or they are entirely // contained by the loop. if it.CellID() == target.id { return true } // Otherwise check if any edges intersect target. if l.boundaryApproxIntersects(it, target) { return true } // Otherwise check if the loop contains the center of target. return l.iteratorContainsPoint(it, target.Center()) } // CellUnionBound computes a covering of the Loop. func (l *Loop) CellUnionBound() []CellID { return l.CapBound().CellUnionBound() } // boundaryApproxIntersects reports if the loop's boundary intersects target. // It may also return true when the loop boundary does not intersect target but // some edge comes within the worst-case error tolerance. // // This requires that it.Locate(target) returned Indexed. func (l *Loop) boundaryApproxIntersects(it *ShapeIndexIterator, target Cell) bool { aClipped := it.IndexCell().findByShapeID(0) // If there are no edges, there is no intersection. if len(aClipped.edges) == 0 { return false } // We can save some work if target is the index cell itself. if it.CellID() == target.ID() { return true } // Otherwise check whether any of the edges intersect target. maxError := (faceClipErrorUVCoord + intersectsRectErrorUVDist) bound := target.BoundUV().ExpandedByMargin(maxError) for _, ai := range aClipped.edges { v0, v1, ok := ClipToPaddedFace(l.Vertex(ai), l.Vertex(ai+1), target.Face(), maxError) if ok && edgeIntersectsRect(v0, v1, bound) { return true } } return false } // iteratorContainsPoint reports if the iterator that is positioned at the ShapeIndexCell // that may contain p, contains the point p. func (l *Loop) iteratorContainsPoint(it *ShapeIndexIterator, p Point) bool { // Test containment by drawing a line segment from the cell center to the // given point and counting edge crossings. aClipped := it.IndexCell().findByShapeID(0) inside := aClipped.containsCenter if len(aClipped.edges) > 0 { center := it.Center() crosser := NewEdgeCrosser(center, p) aiPrev := -2 for _, ai := range aClipped.edges { if ai != aiPrev+1 { crosser.RestartAt(l.Vertex(ai)) } aiPrev = ai inside = inside != crosser.EdgeOrVertexChainCrossing(l.Vertex(ai+1)) } } return inside } // RegularLoop creates a loop with the given number of vertices, all // located on a circle of the specified radius around the given center. func RegularLoop(center Point, radius s1.Angle, numVertices int) *Loop { return RegularLoopForFrame(getFrame(center), radius, numVertices) } // RegularLoopForFrame creates a loop centered around the z-axis of the given // coordinate frame, with the first vertex in the direction of the positive x-axis. func RegularLoopForFrame(frame matrix3x3, radius s1.Angle, numVertices int) *Loop { return LoopFromPoints(regularPointsForFrame(frame, radius, numVertices)) } // CanonicalFirstVertex returns a first index and a direction (either +1 or -1) // such that the vertex sequence (first, first+dir, ..., first+(n-1)*dir) does // not change when the loop vertex order is rotated or inverted. This allows the // loop vertices to be traversed in a canonical order. The return values are // chosen such that (first, ..., first+n*dir) are in the range [0, 2*n-1] as // expected by the Vertex method. func (l *Loop) CanonicalFirstVertex() (firstIdx, direction int) { firstIdx = 0 n := len(l.vertices) for i := 1; i < n; i++ { if l.Vertex(i).Cmp(l.Vertex(firstIdx).Vector) == -1 { firstIdx = i } } // 0 <= firstIdx <= n-1, so (firstIdx+n*dir) <= 2*n-1. if l.Vertex(firstIdx+1).Cmp(l.Vertex(firstIdx+n-1).Vector) == -1 { return firstIdx, 1 } // n <= firstIdx <= 2*n-1, so (firstIdx+n*dir) >= 0. firstIdx += n return firstIdx, -1 } // TurningAngle returns the sum of the turning angles at each vertex. The return // value is positive if the loop is counter-clockwise, negative if the loop is // clockwise, and zero if the loop is a great circle. Degenerate and // nearly-degenerate loops are handled consistently with Sign. So for example, // if a loop has zero area (i.e., it is a very small CCW loop) then the turning // angle will always be negative. // // This quantity is also called the "geodesic curvature" of the loop. func (l *Loop) TurningAngle() float64 { // For empty and full loops, we return the limit value as the loop area // approaches 0 or 4*Pi respectively. if l.isEmptyOrFull() { if l.ContainsOrigin() { return -2 * math.Pi } return 2 * math.Pi } // Don't crash even if the loop is not well-defined. if len(l.vertices) < 3 { return 0 } // To ensure that we get the same result when the vertex order is rotated, // and that the result is negated when the vertex order is reversed, we need // to add up the individual turn angles in a consistent order. (In general, // adding up a set of numbers in a different order can change the sum due to // rounding errors.) // // Furthermore, if we just accumulate an ordinary sum then the worst-case // error is quadratic in the number of vertices. (This can happen with // spiral shapes, where the partial sum of the turning angles can be linear // in the number of vertices.) To avoid this we use the Kahan summation // algorithm (http://en.wikipedia.org/wiki/Kahan_summation_algorithm). n := len(l.vertices) i, dir := l.CanonicalFirstVertex() sum := TurnAngle(l.Vertex((i+n-dir)%n), l.Vertex(i), l.Vertex((i+dir)%n)) compensation := s1.Angle(0) for n-1 > 0 { i += dir angle := TurnAngle(l.Vertex(i-dir), l.Vertex(i), l.Vertex(i+dir)) oldSum := sum angle += compensation sum += angle compensation = (oldSum - sum) + angle n-- } return float64(dir) * float64(sum+compensation) } // turningAngleMaxError return the maximum error in TurningAngle. The value is not // constant; it depends on the loop. func (l *Loop) turningAngleMaxError() float64 { // The maximum error can be bounded as follows: // 2.24 * dblEpsilon for RobustCrossProd(b, a) // 2.24 * dblEpsilon for RobustCrossProd(c, b) // 3.25 * dblEpsilon for Angle() // 2.00 * dblEpsilon for each addition in the Kahan summation // ------------------ // 9.73 * dblEpsilon maxErrorPerVertex := 9.73 * dblEpsilon return maxErrorPerVertex * float64(len(l.vertices)) } // IsHole reports whether this loop represents a hole in its containing polygon. func (l *Loop) IsHole() bool { return l.depth&1 != 0 } // Sign returns -1 if this Loop represents a hole in its containing polygon, and +1 otherwise. func (l *Loop) Sign() int { if l.IsHole() { return -1 } return 1 } // IsNormalized reports whether the loop area is at most 2*pi. Degenerate loops are // handled consistently with Sign, i.e., if a loop can be // expressed as the union of degenerate or nearly-degenerate CCW triangles, // then it will always be considered normalized. func (l *Loop) IsNormalized() bool { // Optimization: if the longitude span is less than 180 degrees, then the // loop covers less than half the sphere and is therefore normalized. if l.bound.Lng.Length() < math.Pi { return true } // We allow some error so that hemispheres are always considered normalized. // TODO(roberts): This is no longer required by the Polygon implementation, // so alternatively we could create the invariant that a loop is normalized // if and only if its complement is not normalized. return l.TurningAngle() >= -l.turningAngleMaxError() } // Normalize inverts the loop if necessary so that the area enclosed by the loop // is at most 2*pi. func (l *Loop) Normalize() { if !l.IsNormalized() { l.Invert() } } // Invert reverses the order of the loop vertices, effectively complementing the // region represented by the loop. For example, the loop ABCD (with edges // AB, BC, CD, DA) becomes the loop DCBA (with edges DC, CB, BA, AD). // Notice that the last edge is the same in both cases except that its // direction has been reversed. func (l *Loop) Invert() { l.index.Reset() if l.isEmptyOrFull() { if l.IsFull() { l.vertices[0] = emptyLoopPoint } else { l.vertices[0] = fullLoopPoint } } else { // For non-special loops, reverse the slice of vertices. for i := len(l.vertices)/2 - 1; i >= 0; i-- { opp := len(l.vertices) - 1 - i l.vertices[i], l.vertices[opp] = l.vertices[opp], l.vertices[i] } } // originInside must be set correctly before building the ShapeIndex. l.originInside = l.originInside != true if l.bound.Lat.Lo > -math.Pi/2 && l.bound.Lat.Hi < math.Pi/2 { // The complement of this loop contains both poles. l.bound = FullRect() l.subregionBound = l.bound } else { l.initBound() } l.index.Add(l) } // findVertex returns the index of the vertex at the given Point in the range // 1..numVertices, and a boolean indicating if a vertex was found. func (l *Loop) findVertex(p Point) (index int, ok bool) { const notFound = 0 if len(l.vertices) < 10 { // Exhaustive search for loops below a small threshold. for i := 1; i <= len(l.vertices); i++ { if l.Vertex(i) == p { return i, true } } return notFound, false } it := l.index.Iterator() if !it.LocatePoint(p) { return notFound, false } aClipped := it.IndexCell().findByShapeID(0) for i := aClipped.numEdges() - 1; i >= 0; i-- { ai := aClipped.edges[i] if l.Vertex(ai) == p { if ai == 0 { return len(l.vertices), true } return ai, true } if l.Vertex(ai+1) == p { return ai + 1, true } } return notFound, false } // ContainsNested reports whether the given loops is contained within this loop. // This function does not test for edge intersections. The two loops must meet // all of the Polygon requirements; for example this implies that their // boundaries may not cross or have any shared edges (although they may have // shared vertices). func (l *Loop) ContainsNested(other *Loop) bool { if !l.subregionBound.Contains(other.bound) { return false } // Special cases to handle either loop being empty or full. Also bail out // when B has no vertices to avoid heap overflow on the vertex(1) call // below. (This method is called during polygon initialization before the // client has an opportunity to call IsValid().) if l.isEmptyOrFull() || other.NumVertices() < 2 { return l.IsFull() || other.IsEmpty() } // We are given that A and B do not share any edges, and that either one // loop contains the other or they do not intersect. m, ok := l.findVertex(other.Vertex(1)) if !ok { // Since other.vertex(1) is not shared, we can check whether A contains it. return l.ContainsPoint(other.Vertex(1)) } // Check whether the edge order around other.Vertex(1) is compatible with // A containing B. return WedgeContains(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), other.Vertex(0), other.Vertex(2)) } // surfaceIntegralFloat64 computes the oriented surface integral of some quantity f(x) // over the loop interior, given a function f(A,B,C) that returns the // corresponding integral over the spherical triangle ABC. Here "oriented // surface integral" means: // // (1) f(A,B,C) must be the integral of f if ABC is counterclockwise, // and the integral of -f if ABC is clockwise. // // (2) The result of this function is *either* the integral of f over the // loop interior, or the integral of (-f) over the loop exterior. // // Note that there are at least two common situations where it easy to work // around property (2) above: // // - If the integral of f over the entire sphere is zero, then it doesn't // matter which case is returned because they are always equal. // // - If f is non-negative, then it is easy to detect when the integral over // the loop exterior has been returned, and the integral over the loop // interior can be obtained by adding the integral of f over the entire // unit sphere (a constant) to the result. // // Any changes to this method may need corresponding changes to surfaceIntegralPoint as well. func (l *Loop) surfaceIntegralFloat64(f func(a, b, c Point) float64) float64 { // We sum f over a collection T of oriented triangles, possibly // overlapping. Let the sign of a triangle be +1 if it is CCW and -1 // otherwise, and let the sign of a point x be the sum of the signs of the // triangles containing x. Then the collection of triangles T is chosen // such that either: // // (1) Each point in the loop interior has sign +1, and sign 0 otherwise; or // (2) Each point in the loop exterior has sign -1, and sign 0 otherwise. // // The triangles basically consist of a fan from vertex 0 to every loop // edge that does not include vertex 0. These triangles will always satisfy // either (1) or (2). However, what makes this a bit tricky is that // spherical edges become numerically unstable as their length approaches // 180 degrees. Of course there is not much we can do if the loop itself // contains such edges, but we would like to make sure that all the triangle // edges under our control (i.e., the non-loop edges) are stable. For // example, consider a loop around the equator consisting of four equally // spaced points. This is a well-defined loop, but we cannot just split it // into two triangles by connecting vertex 0 to vertex 2. // // We handle this type of situation by moving the origin of the triangle fan // whenever we are about to create an unstable edge. We choose a new // location for the origin such that all relevant edges are stable. We also // create extra triangles with the appropriate orientation so that the sum // of the triangle signs is still correct at every point. // The maximum length of an edge for it to be considered numerically stable. // The exact value is fairly arbitrary since it depends on the stability of // the function f. The value below is quite conservative but could be // reduced further if desired. const maxLength = math.Pi - 1e-5 var sum float64 origin := l.Vertex(0) for i := 1; i+1 < len(l.vertices); i++ { // Let V_i be vertex(i), let O be the current origin, and let length(A,B) // be the length of edge (A,B). At the start of each loop iteration, the // "leading edge" of the triangle fan is (O,V_i), and we want to extend // the triangle fan so that the leading edge is (O,V_i+1). // // Invariants: // 1. length(O,V_i) < maxLength for all (i > 1). // 2. Either O == V_0, or O is approximately perpendicular to V_0. // 3. "sum" is the oriented integral of f over the area defined by // (O, V_0, V_1, ..., V_i). if l.Vertex(i+1).Angle(origin.Vector) > maxLength { // We are about to create an unstable edge, so choose a new origin O' // for the triangle fan. oldOrigin := origin if origin == l.Vertex(0) { // The following point is well-separated from V_i and V_0 (and // therefore V_i+1 as well). origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()} } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength { // All edges of the triangle (O, V_0, V_i) are stable, so we can // revert to using V_0 as the origin. origin = l.Vertex(0) } else { // (O, V_i+1) and (V_0, V_i) are antipodal pairs, and O and V_0 are // perpendicular. Therefore V_0.CrossProd(O) is approximately // perpendicular to all of {O, V_0, V_i, V_i+1}, and we can choose // this point O' as the new origin. origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)} // Advance the edge (V_0,O) to (V_0,O'). sum += f(l.Vertex(0), oldOrigin, origin) } // Advance the edge (O,V_i) to (O',V_i). sum += f(oldOrigin, l.Vertex(i), origin) } // Advance the edge (O,V_i) to (O,V_i+1). sum += f(origin, l.Vertex(i), l.Vertex(i+1)) } // If the origin is not V_0, we need to sum one more triangle. if origin != l.Vertex(0) { // Advance the edge (O,V_n-1) to (O,V_0). sum += f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)) } return sum } // surfaceIntegralPoint mirrors the surfaceIntegralFloat64 method but over Points; // see that method for commentary. The C++ version uses a templated method. // Any changes to this method may need corresponding changes to surfaceIntegralFloat64 as well. func (l *Loop) surfaceIntegralPoint(f func(a, b, c Point) Point) Point { const maxLength = math.Pi - 1e-5 var sum r3.Vector origin := l.Vertex(0) for i := 1; i+1 < len(l.vertices); i++ { if l.Vertex(i+1).Angle(origin.Vector) > maxLength { oldOrigin := origin if origin == l.Vertex(0) { origin = Point{l.Vertex(0).PointCross(l.Vertex(i)).Normalize()} } else if l.Vertex(i).Angle(l.Vertex(0).Vector) < maxLength { origin = l.Vertex(0) } else { origin = Point{l.Vertex(0).Cross(oldOrigin.Vector)} sum = sum.Add(f(l.Vertex(0), oldOrigin, origin).Vector) } sum = sum.Add(f(oldOrigin, l.Vertex(i), origin).Vector) } sum = sum.Add(f(origin, l.Vertex(i), l.Vertex(i+1)).Vector) } if origin != l.Vertex(0) { sum = sum.Add(f(origin, l.Vertex(len(l.vertices)-1), l.Vertex(0)).Vector) } return Point{sum} } // Area returns the area of the loop interior, i.e. the region on the left side of // the loop. The return value is between 0 and 4*pi. (Note that the return // value is not affected by whether this loop is a "hole" or a "shell".) func (l *Loop) Area() float64 { // It is suprisingly difficult to compute the area of a loop robustly. The // main issues are (1) whether degenerate loops are considered to be CCW or // not (i.e., whether their area is close to 0 or 4*pi), and (2) computing // the areas of small loops with good relative accuracy. // // With respect to degeneracies, we would like Area to be consistent // with ContainsPoint in that loops that contain many points // should have large areas, and loops that contain few points should have // small areas. For example, if a degenerate triangle is considered CCW // according to s2predicates Sign, then it will contain very few points and // its area should be approximately zero. On the other hand if it is // considered clockwise, then it will contain virtually all points and so // its area should be approximately 4*pi. // // More precisely, let U be the set of Points for which IsUnitLength // is true, let P(U) be the projection of those points onto the mathematical // unit sphere, and let V(P(U)) be the Voronoi diagram of the projected // points. Then for every loop x, we would like Area to approximately // equal the sum of the areas of the Voronoi regions of the points p for // which x.ContainsPoint(p) is true. // // The second issue is that we want to compute the area of small loops // accurately. This requires having good relative precision rather than // good absolute precision. For example, if the area of a loop is 1e-12 and // the error is 1e-15, then the area only has 3 digits of accuracy. (For // reference, 1e-12 is about 40 square meters on the surface of the earth.) // We would like to have good relative accuracy even for small loops. // // To achieve these goals, we combine two different methods of computing the // area. This first method is based on the Gauss-Bonnet theorem, which says // that the area enclosed by the loop equals 2*pi minus the total geodesic // curvature of the loop (i.e., the sum of the "turning angles" at all the // loop vertices). The big advantage of this method is that as long as we // use Sign to compute the turning angle at each vertex, then // degeneracies are always handled correctly. In other words, if a // degenerate loop is CCW according to the symbolic perturbations used by // Sign, then its turning angle will be approximately 2*pi. // // The disadvantage of the Gauss-Bonnet method is that its absolute error is // about 2e-15 times the number of vertices (see turningAngleMaxError). // So, it cannot compute the area of small loops accurately. // // The second method is based on splitting the loop into triangles and // summing the area of each triangle. To avoid the difficulty and expense // of decomposing the loop into a union of non-overlapping triangles, // instead we compute a signed sum over triangles that may overlap (see the // comments for surfaceIntegral). The advantage of this method // is that the area of each triangle can be computed with much better // relative accuracy (using l'Huilier's theorem). The disadvantage is that // the result is a signed area: CCW loops may yield a small positive value, // while CW loops may yield a small negative value (which is converted to a // positive area by adding 4*pi). This means that small errors in computing // the signed area may translate into a very large error in the result (if // the sign of the sum is incorrect). // // So, our strategy is to combine these two methods as follows. First we // compute the area using the "signed sum over triangles" approach (since it // is generally more accurate). We also estimate the maximum error in this // result. If the signed area is too close to zero (i.e., zero is within // the error bounds), then we double-check the sign of the result using the // Gauss-Bonnet method. (In fact we just call IsNormalized, which is // based on this method.) If the two methods disagree, we return either 0 // or 4*pi based on the result of IsNormalized. Otherwise we return the // area that we computed originally. if l.isEmptyOrFull() { if l.ContainsOrigin() { return 4 * math.Pi } return 0 } area := l.surfaceIntegralFloat64(SignedArea) // TODO(roberts): This error estimate is very approximate. There are two // issues: (1) SignedArea needs some improvements to ensure that its error // is actually never higher than GirardArea, and (2) although the number of // triangles in the sum is typically N-2, in theory it could be as high as // 2*N for pathological inputs. But in other respects this error bound is // very conservative since it assumes that the maximum error is achieved on // every triangle. maxError := l.turningAngleMaxError() // The signed area should be between approximately -4*pi and 4*pi. if area < 0 { // We have computed the negative of the area of the loop exterior. area += 4 * math.Pi } if area > 4*math.Pi { area = 4 * math.Pi } if area < 0 { area = 0 } // If the area is close enough to zero or 4*pi so that the loop orientation // is ambiguous, then we compute the loop orientation explicitly. if area < maxError && !l.IsNormalized() { return 4 * math.Pi } else if area > (4*math.Pi-maxError) && l.IsNormalized() { return 0 } return area } // Centroid returns the true centroid of the loop multiplied by the area of the // loop. The result is not unit length, so you may want to normalize it. Also // note that in general, the centroid may not be contained by the loop. // // We prescale by the loop area for two reasons: (1) it is cheaper to // compute this way, and (2) it makes it easier to compute the centroid of // more complicated shapes (by splitting them into disjoint regions and // adding their centroids). // // Note that the return value is not affected by whether this loop is a // "hole" or a "shell". func (l *Loop) Centroid() Point { // surfaceIntegralPoint() returns either the integral of position over loop // interior, or the negative of the integral of position over the loop // exterior. But these two values are the same (!), because the integral of // position over the entire sphere is (0, 0, 0). return l.surfaceIntegralPoint(TrueCentroid) } // Encode encodes the Loop. func (l Loop) Encode(w io.Writer) error { e := &encoder{w: w} l.encode(e) return e.err } func (l Loop) encode(e *encoder) { e.writeInt8(encodingVersion) e.writeUint32(uint32(len(l.vertices))) for _, v := range l.vertices { e.writeFloat64(v.X) e.writeFloat64(v.Y) e.writeFloat64(v.Z) } e.writeBool(l.originInside) e.writeInt32(int32(l.depth)) // Encode the bound. l.bound.encode(e) } // Decode decodes a loop. func (l *Loop) Decode(r io.Reader) error { *l = Loop{} d := &decoder{r: asByteReader(r)} l.decode(d) return d.err } func (l *Loop) decode(d *decoder) { version := int8(d.readUint8()) if d.err != nil { return } if version != encodingVersion { d.err = fmt.Errorf("cannot decode version %d", version) return } // Empty loops are explicitly allowed here: a newly created loop has zero vertices // and such loops encode and decode properly. nvertices := d.readUint32() if nvertices > maxEncodedVertices { if d.err == nil { d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices) } return } l.vertices = make([]Point, nvertices) for i := range l.vertices { l.vertices[i].X = d.readFloat64() l.vertices[i].Y = d.readFloat64() l.vertices[i].Z = d.readFloat64() } l.originInside = d.readBool() l.depth = int(d.readUint32()) l.bound.decode(d) l.subregionBound = ExpandForSubregions(l.bound) l.index = NewShapeIndex() l.index.Add(l) } // Bitmasks to read from properties. const ( originInside = 1 << iota boundEncoded ) func (l *Loop) xyzFaceSiTiVertices() []xyzFaceSiTi { ret := make([]xyzFaceSiTi, len(l.vertices)) for i, v := range l.vertices { ret[i].xyz = v ret[i].face, ret[i].si, ret[i].ti, ret[i].level = xyzToFaceSiTi(v) } return ret } func (l *Loop) encodeCompressed(e *encoder, snapLevel int, vertices []xyzFaceSiTi) { if len(l.vertices) != len(vertices) { panic("encodeCompressed: vertices must be the same length as l.vertices") } if len(vertices) > maxEncodedVertices { if e.err == nil { e.err = fmt.Errorf("too many vertices (%d; max is %d)", len(vertices), maxEncodedVertices) } return } e.writeUvarint(uint64(len(vertices))) encodePointsCompressed(e, vertices, snapLevel) props := l.compressedEncodingProperties() e.writeUvarint(props) e.writeUvarint(uint64(l.depth)) if props&boundEncoded != 0 { l.bound.encode(e) } } func (l *Loop) compressedEncodingProperties() uint64 { var properties uint64 if l.originInside { properties |= originInside } // Write whether there is a bound so we can change the threshold later. // Recomputing the bound multiplies the decode time taken per vertex // by a factor of about 3.5. Without recomputing the bound, decode // takes approximately 125 ns / vertex. A loop with 63 vertices // encoded without the bound will take ~30us to decode, which is // acceptable. At ~3.5 bytes / vertex without the bound, adding // the bound will increase the size by <15%, which is also acceptable. const minVerticesForBound = 64 if len(l.vertices) >= minVerticesForBound { properties |= boundEncoded } return properties } func (l *Loop) decodeCompressed(d *decoder, snapLevel int) { nvertices := d.readUvarint() if d.err != nil { return } if nvertices > maxEncodedVertices { d.err = fmt.Errorf("too many vertices (%d; max is %d)", nvertices, maxEncodedVertices) return } l.vertices = make([]Point, nvertices) decodePointsCompressed(d, snapLevel, l.vertices) properties := d.readUvarint() // Make sure values are valid before using. if d.err != nil { return } l.originInside = (properties & originInside) != 0 l.depth = int(d.readUvarint()) if (properties & boundEncoded) != 0 { l.bound.decode(d) if d.err != nil { return } l.subregionBound = ExpandForSubregions(l.bound) } else { l.initBound() } l.index = NewShapeIndex() l.index.Add(l) } // crossingTarget is an enum representing the possible crossing target cases for relations. type crossingTarget int const ( crossingTargetDontCare crossingTarget = iota crossingTargetDontCross crossingTargetCross ) // loopRelation defines the interface for checking a type of relationship between two loops. // Some examples of relations are Contains, Intersects, or CompareBoundary. type loopRelation interface { // Optionally, aCrossingTarget and bCrossingTarget can specify an early-exit // condition for the loop relation. If any point P is found such that // // A.ContainsPoint(P) == aCrossingTarget() && // B.ContainsPoint(P) == bCrossingTarget() // // then the loop relation is assumed to be the same as if a pair of crossing // edges were found. For example, the ContainsPoint relation has // // aCrossingTarget() == crossingTargetDontCross // bCrossingTarget() == crossingTargetCross // // because if A.ContainsPoint(P) == false and B.ContainsPoint(P) == true // for any point P, then it is equivalent to finding an edge crossing (i.e., // since Contains returns false in both cases). // // Loop relations that do not have an early-exit condition of this form // should return crossingTargetDontCare for both crossing targets. // aCrossingTarget reports whether loop A crosses the target point with // the given relation type. aCrossingTarget() crossingTarget // bCrossingTarget reports whether loop B crosses the target point with // the given relation type. bCrossingTarget() crossingTarget // wedgesCross reports if a shared vertex ab1 and the two associated wedges // (a0, ab1, b2) and (b0, ab1, b2) are equivalent to an edge crossing. // The loop relation is also allowed to maintain its own internal state, and // can return true if it observes any sequence of wedges that are equivalent // to an edge crossing. wedgesCross(a0, ab1, a2, b0, b2 Point) bool } // loopCrosser is a helper type for determining whether two loops cross. // It is instantiated twice for each pair of loops to be tested, once for the // pair (A,B) and once for the pair (B,A), in order to be able to process // edges in either loop nesting order. type loopCrosser struct { a, b *Loop relation loopRelation swapped bool aCrossingTarget crossingTarget bCrossingTarget crossingTarget // state maintained by startEdge and edgeCrossesCell. crosser *EdgeCrosser aj, bjPrev int // temporary data declared here to avoid repeated memory allocations. bQuery *CrossingEdgeQuery bCells []*ShapeIndexCell } // newLoopCrosser creates a loopCrosser from the given values. If swapped is true, // the loops A and B have been swapped. This affects how arguments are passed to // the given loop relation, since for example A.Contains(B) is not the same as // B.Contains(A). func newLoopCrosser(a, b *Loop, relation loopRelation, swapped bool) *loopCrosser { l := &loopCrosser{ a: a, b: b, relation: relation, swapped: swapped, aCrossingTarget: relation.aCrossingTarget(), bCrossingTarget: relation.bCrossingTarget(), bQuery: NewCrossingEdgeQuery(b.index), } if swapped { l.aCrossingTarget, l.bCrossingTarget = l.bCrossingTarget, l.aCrossingTarget } return l } // startEdge sets the crossers state for checking the given edge of loop A. func (l *loopCrosser) startEdge(aj int) { l.crosser = NewEdgeCrosser(l.a.Vertex(aj), l.a.Vertex(aj+1)) l.aj = aj l.bjPrev = -2 } // edgeCrossesCell reports whether the current edge of loop A has any crossings with // edges of the index cell of loop B. func (l *loopCrosser) edgeCrossesCell(bClipped *clippedShape) bool { // Test the current edge of A against all edges of bClipped bNumEdges := bClipped.numEdges() for j := 0; j < bNumEdges; j++ { bj := bClipped.edges[j] if bj != l.bjPrev+1 { l.crosser.RestartAt(l.b.Vertex(bj)) } l.bjPrev = bj if crossing := l.crosser.ChainCrossingSign(l.b.Vertex(bj + 1)); crossing == DoNotCross { continue } else if crossing == Cross { return true } // We only need to check each shared vertex once, so we only // consider the case where l.aVertex(l.aj+1) == l.b.Vertex(bj+1). if l.a.Vertex(l.aj+1) == l.b.Vertex(bj+1) { if l.swapped { if l.relation.wedgesCross(l.b.Vertex(bj), l.b.Vertex(bj+1), l.b.Vertex(bj+2), l.a.Vertex(l.aj), l.a.Vertex(l.aj+2)) { return true } } else { if l.relation.wedgesCross(l.a.Vertex(l.aj), l.a.Vertex(l.aj+1), l.a.Vertex(l.aj+2), l.b.Vertex(bj), l.b.Vertex(bj+2)) { return true } } } } return false } // cellCrossesCell reports whether there are any edge crossings or wedge crossings // within the two given cells. func (l *loopCrosser) cellCrossesCell(aClipped, bClipped *clippedShape) bool { // Test all edges of aClipped against all edges of bClipped. for _, edge := range aClipped.edges { l.startEdge(edge) if l.edgeCrossesCell(bClipped) { return true } } return false } // cellCrossesAnySubcell reports whether given an index cell of A, if there are any // edge or wedge crossings with any index cell of B contained within bID. func (l *loopCrosser) cellCrossesAnySubcell(aClipped *clippedShape, bID CellID) bool { // Test all edges of aClipped against all edges of B. The relevant B // edges are guaranteed to be children of bID, which lets us find the // correct index cells more efficiently. bRoot := PaddedCellFromCellID(bID, 0) for _, aj := range aClipped.edges { // Use an CrossingEdgeQuery starting at bRoot to find the index cells // of B that might contain crossing edges. l.bCells = l.bQuery.getCells(l.a.Vertex(aj), l.a.Vertex(aj+1), bRoot) if len(l.bCells) == 0 { continue } l.startEdge(aj) for c := 0; c < len(l.bCells); c++ { if l.edgeCrossesCell(l.bCells[c].shapes[0]) { return true } } } return false } // hasCrossing reports whether given two iterators positioned such that // ai.cellID().ContainsCellID(bi.cellID()), there is an edge or wedge crossing // anywhere within ai.cellID(). This function advances bi only past ai.cellID(). func (l *loopCrosser) hasCrossing(ai, bi *rangeIterator) bool { // If ai.CellID() intersects many edges of B, then it is faster to use // CrossingEdgeQuery to narrow down the candidates. But if it intersects // only a few edges, it is faster to check all the crossings directly. // We handle this by advancing bi and keeping track of how many edges we // would need to test. const edgeQueryMinEdges = 20 // Tuned from benchmarks. var totalEdges int l.bCells = nil for { if n := bi.it.IndexCell().shapes[0].numEdges(); n > 0 { totalEdges += n if totalEdges >= edgeQueryMinEdges { // There are too many edges to test them directly, so use CrossingEdgeQuery. if l.cellCrossesAnySubcell(ai.it.IndexCell().shapes[0], ai.cellID()) { return true } bi.seekBeyond(ai) return false } l.bCells = append(l.bCells, bi.indexCell()) } bi.next() if bi.cellID() > ai.rangeMax { break } } // Test all the edge crossings directly. for _, c := range l.bCells { if l.cellCrossesCell(ai.it.IndexCell().shapes[0], c.shapes[0]) { return true } } return false } // containsCenterMatches reports if the clippedShapes containsCenter boolean corresponds // to the crossing target type given. (This is to work around C++ allowing false == 0, // true == 1 type implicit conversions and comparisons) func containsCenterMatches(a *clippedShape, target crossingTarget) bool { return (!a.containsCenter && target == crossingTargetDontCross) || (a.containsCenter && target == crossingTargetCross) } // hasCrossingRelation reports whether given two iterators positioned such that // ai.cellID().ContainsCellID(bi.cellID()), there is a crossing relationship // anywhere within ai.cellID(). Specifically, this method returns true if there // is an edge crossing, a wedge crossing, or a point P that matches both relations // crossing targets. This function advances both iterators past ai.cellID. func (l *loopCrosser) hasCrossingRelation(ai, bi *rangeIterator) bool { aClipped := ai.it.IndexCell().shapes[0] if aClipped.numEdges() != 0 { // The current cell of A has at least one edge, so check for crossings. if l.hasCrossing(ai, bi) { return true } ai.next() return false } if containsCenterMatches(aClipped, l.aCrossingTarget) { // The crossing target for A is not satisfied, so we skip over these cells of B. bi.seekBeyond(ai) ai.next() return false } // All points within ai.cellID() satisfy the crossing target for A, so it's // worth iterating through the cells of B to see whether any cell // centers also satisfy the crossing target for B. for bi.cellID() <= ai.rangeMax { bClipped := bi.it.IndexCell().shapes[0] if containsCenterMatches(bClipped, l.bCrossingTarget) { return true } bi.next() } ai.next() return false } // hasCrossingRelation checks all edges of loop A for intersection against all edges // of loop B and reports if there are any that satisfy the given relation. If there // is any shared vertex, the wedges centered at this vertex are sent to the given // relation to be tested. // // If the two loop boundaries cross, this method is guaranteed to return // true. It also returns true in certain cases if the loop relationship is // equivalent to crossing. For example, if the relation is Contains and a // point P is found such that B contains P but A does not contain P, this // method will return true to indicate that the result is the same as though // a pair of crossing edges were found (since Contains returns false in // both cases). // // See Contains, Intersects and CompareBoundary for the three uses of this function. func hasCrossingRelation(a, b *Loop, relation loopRelation) bool { // We look for CellID ranges where the indexes of A and B overlap, and // then test those edges for crossings. ai := newRangeIterator(a.index) bi := newRangeIterator(b.index) ab := newLoopCrosser(a, b, relation, false) // Tests edges of A against B ba := newLoopCrosser(b, a, relation, true) // Tests edges of B against A for !ai.done() || !bi.done() { if ai.rangeMax < bi.rangeMin { // The A and B cells don't overlap, and A precedes B. ai.seekTo(bi) } else if bi.rangeMax < ai.rangeMin { // The A and B cells don't overlap, and B precedes A. bi.seekTo(ai) } else { // One cell contains the other. Determine which cell is larger. abRelation := int64(ai.it.CellID().lsb() - bi.it.CellID().lsb()) if abRelation > 0 { // A's index cell is larger. if ab.hasCrossingRelation(ai, bi) { return true } } else if abRelation < 0 { // B's index cell is larger. if ba.hasCrossingRelation(bi, ai) { return true } } else { // The A and B cells are the same. Since the two cells // have the same center point P, check whether P satisfies // the crossing targets. aClipped := ai.it.IndexCell().shapes[0] bClipped := bi.it.IndexCell().shapes[0] if containsCenterMatches(aClipped, ab.aCrossingTarget) && containsCenterMatches(bClipped, ab.bCrossingTarget) { return true } // Otherwise test all the edge crossings directly. if aClipped.numEdges() > 0 && bClipped.numEdges() > 0 && ab.cellCrossesCell(aClipped, bClipped) { return true } ai.next() bi.next() } } } return false } // containsRelation implements loopRelation for a contains operation. If // A.ContainsPoint(P) == false && B.ContainsPoint(P) == true, it is equivalent // to having an edge crossing (i.e., Contains returns false). type containsRelation struct { foundSharedVertex bool } func (c *containsRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCross } func (c *containsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross } func (c *containsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { c.foundSharedVertex = true return !WedgeContains(a0, ab1, a2, b0, b2) } // intersectsRelation implements loopRelation for an intersects operation. Given // two loops, A and B, if A.ContainsPoint(P) == true && B.ContainsPoint(P) == true, // it is equivalent to having an edge crossing (i.e., Intersects returns true). type intersectsRelation struct { foundSharedVertex bool } func (i *intersectsRelation) aCrossingTarget() crossingTarget { return crossingTargetCross } func (i *intersectsRelation) bCrossingTarget() crossingTarget { return crossingTargetCross } func (i *intersectsRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { i.foundSharedVertex = true return WedgeIntersects(a0, ab1, a2, b0, b2) } // compareBoundaryRelation implements loopRelation for comparing boundaries. // // The compare boundary relation does not have a useful early-exit condition, // so we return crossingTargetDontCare for both crossing targets. // // Aside: A possible early exit condition could be based on the following. // If A contains a point of both B and ~B, then A intersects Boundary(B). // If ~A contains a point of both B and ~B, then ~A intersects Boundary(B). // So if the intersections of {A, ~A} with {B, ~B} are all non-empty, // the return value is 0, i.e., Boundary(A) intersects Boundary(B). // Unfortunately it isn't worth detecting this situation because by the // time we have seen a point in all four intersection regions, we are also // guaranteed to have seen at least one pair of crossing edges. type compareBoundaryRelation struct { reverse bool // True if the other loop should be reversed. foundSharedVertex bool // True if any wedge was processed. containsEdge bool // True if any edge of the other loop is contained by this loop. excludesEdge bool // True if any edge of the other loop is excluded by this loop. } func newCompareBoundaryRelation(reverse bool) *compareBoundaryRelation { return &compareBoundaryRelation{reverse: reverse} } func (c *compareBoundaryRelation) aCrossingTarget() crossingTarget { return crossingTargetDontCare } func (c *compareBoundaryRelation) bCrossingTarget() crossingTarget { return crossingTargetDontCare } func (c *compareBoundaryRelation) wedgesCross(a0, ab1, a2, b0, b2 Point) bool { // Because we don't care about the interior of the other, only its boundary, // it is sufficient to check whether this one contains the semiwedge (ab1, b2). c.foundSharedVertex = true if wedgeContainsSemiwedge(a0, ab1, a2, b2, c.reverse) { c.containsEdge = true } else { c.excludesEdge = true } return c.containsEdge && c.excludesEdge } // wedgeContainsSemiwedge reports whether the wedge (a0, ab1, a2) contains the // "semiwedge" defined as any non-empty open set of rays immediately CCW from // the edge (ab1, b2). If reverse is true, then substitute clockwise for CCW; // this simulates what would happen if the direction of the other loop was reversed. func wedgeContainsSemiwedge(a0, ab1, a2, b2 Point, reverse bool) bool { if b2 == a0 || b2 == a2 { // We have a shared or reversed edge. return (b2 == a0) == reverse } return OrderedCCW(a0, a2, b2, ab1) } // containsNonCrossingBoundary reports whether given two loops whose boundaries // do not cross (see compareBoundary), if this loop contains the boundary of the // other loop. If reverse is true, the boundary of the other loop is reversed // first (which only affects the result when there are shared edges). This method // is cheaper than compareBoundary because it does not test for edge intersections. // // This function requires that neither loop is empty, and that if the other is full, // then reverse == false. func (l *Loop) containsNonCrossingBoundary(other *Loop, reverseOther bool) bool { // The bounds must intersect for containment. if !l.bound.Intersects(other.bound) { return false } // Full loops are handled as though the loop surrounded the entire sphere. if l.IsFull() { return true } if other.IsFull() { return false } m, ok := l.findVertex(other.Vertex(0)) if !ok { // Since the other loops vertex 0 is not shared, we can check if this contains it. return l.ContainsPoint(other.Vertex(0)) } // Otherwise check whether the edge (b0, b1) is contained by this loop. return wedgeContainsSemiwedge(l.Vertex(m-1), l.Vertex(m), l.Vertex(m+1), other.Vertex(1), reverseOther) } // TODO(roberts): Differences from the C++ version: // DistanceToPoint // DistanceToBoundary // Project // ProjectToBoundary // Equal // BoundaryEqual // BoundaryApproxEqual // BoundaryNear