// Copyright 2014 Google Inc. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. package s2 // A Region represents a two-dimensional region on the unit sphere. // // The purpose of this interface is to allow complex regions to be // approximated as simpler regions. The interface is restricted to methods // that are useful for computing approximations. type Region interface { // CapBound returns a bounding spherical cap. This is not guaranteed to be exact. CapBound() Cap // RectBound returns a bounding latitude-longitude rectangle that contains // the region. The bounds are not guaranteed to be tight. RectBound() Rect // ContainsCell reports whether the region completely contains the given region. // It returns false if containment could not be determined. ContainsCell(c Cell) bool // IntersectsCell reports whether the region intersects the given cell or // if intersection could not be determined. It returns false if the region // does not intersect. IntersectsCell(c Cell) bool // ContainsPoint reports whether the region contains the given point or not. // The point should be unit length, although some implementations may relax // this restriction. ContainsPoint(p Point) bool // CellUnionBound returns a small collection of CellIDs whose union covers // the region. The cells are not sorted, may have redundancies (such as cells // that contain other cells), and may cover much more area than necessary. // // This method is not intended for direct use by client code. Clients // should typically use Covering, which has options to control the size and // accuracy of the covering. Alternatively, if you want a fast covering and // don't care about accuracy, consider calling FastCovering (which returns a // cleaned-up version of the covering computed by this method). // // CellUnionBound implementations should attempt to return a small // covering (ideally 4 cells or fewer) that covers the region and can be // computed quickly. The result is used by RegionCoverer as a starting // point for further refinement. CellUnionBound() []CellID } // Enforce Region interface satisfaction. var ( _ Region = Cap{} _ Region = Cell{} _ Region = (*CellUnion)(nil) _ Region = (*Loop)(nil) _ Region = Point{} _ Region = (*Polygon)(nil) _ Region = (*Polyline)(nil) _ Region = Rect{} )