1
0
Fork 0
mirror of https://github.com/Luzifer/staticmap.git synced 2024-12-21 05:11:18 +00:00
staticmap/vendor/golang.org/x/image/draw/impl.go

6669 lines
205 KiB
Go
Raw Normal View History

// generated by "go run gen.go". DO NOT EDIT.
package draw
import (
"image"
"image/color"
"math"
"golang.org/x/image/math/f64"
)
func (z nnInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Scale to a Copy.
if dr.Size() == sr.Size() {
Copy(dst, dr.Min, src, sr, op, opts)
return
}
var o Options
if opts != nil {
o = *opts
}
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
case Src:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
} else if _, ok := src.(*image.Uniform); ok {
Draw(dst, dr, src, src.Bounds().Min, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o)
default:
z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o)
case *image.NRGBA:
z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio444:
z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio422:
z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio420:
z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio440:
z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o)
}
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
}
}
}
}
func (z nnInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Transform to a Copy.
if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 {
dx := int(s2d[2])
dy := int(s2d[5])
if float64(dx) == s2d[2] && float64(dy) == s2d[5] {
Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts)
return
}
}
var o Options
if opts != nil {
o = *opts
}
dr := transformRect(&s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
d2s := invert(&s2d)
// bias is a translation of the mapping from dst coordinates to src
// coordinates such that the latter temporarily have non-negative X
// and Y coordinates. This allows us to write int(f) instead of
// int(math.Floor(f)), since "round to zero" and "round down" are
// equivalent when f >= 0, but the former is much cheaper. The X--
// and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
// adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case Src:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
} else if u, ok := src.(*image.Uniform); ok {
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
default:
z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.NRGBA:
z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio444:
z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio422:
z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio420:
z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio440:
z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
}
}
}
func (nnInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pr := uint32(src.Pix[pi]) * 0x101
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx)-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pi := (sr.Min.Y+int(sy)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(sy))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (nnInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
dw2 := uint64(dr.Dx()) * 2
dh2 := uint64(dr.Dy()) * 2
sw := uint64(sr.Dx())
sh := uint64(sr.Dy())
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (2*uint64(dy) + 1) * sh / dh2
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (2*uint64(dx) + 1) * sw / dw2
pr, pg, pb, pa := src.At(sr.Min.X+int(sx), sr.Min.Y+int(sy)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx), smp.Y+sr.Min.Y+int(sy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (nnInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
pr := uint32(src.Pix[pi]) * 0x101
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pa := uint32(src.Pix[pi+3]) * 0x101
pr := uint32(src.Pix[pi+0]) * pa / 0xff
pg := uint32(src.Pix[pi+1]) * pa / 0xff
pb := uint32(src.Pix[pi+2]) * pa / 0xff
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
pr := uint32(src.Pix[pi+0]) * 0x101
pg := uint32(src.Pix[pi+1]) * 0x101
pb := uint32(src.Pix[pi+2]) * 0x101
pa := uint32(src.Pix[pi+3]) * 0x101
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pi := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
pj := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pr := (pyy1 + 91881*pcr1) >> 8
pg := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pb := (pyy1 + 116130*pcb1) >> 8
if pr < 0 {
pr = 0
} else if pr > 0xffff {
pr = 0xffff
}
if pg < 0 {
pg = 0
} else if pg > 0xffff {
pg = 0xffff
}
if pb < 0 {
pb = 0
} else if pb > 0xffff {
pb = 0xffff
}
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (nnInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (nnInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (nnInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (nnInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx0 := int(d2s[0]*dxf+d2s[1]*dyf+d2s[2]) + bias.X
sy0 := int(d2s[3]*dxf+d2s[4]*dyf+d2s[5]) + bias.Y
if !(image.Point{sx0, sy0}).In(sr) {
continue
}
pr, pg, pb, pa := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (z ablInterpolator) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Scale to a Copy.
if dr.Size() == sr.Size() {
Copy(dst, dr.Min, src, sr, op, opts)
return
}
var o Options
if opts != nil {
o = *opts
}
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
case Src:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
} else if _, ok := src.(*image.Uniform); ok {
Draw(dst, dr, src, src.Bounds().Min, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.scale_RGBA_NRGBA_Over(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Over(dst, dr, adr, src, sr, &o)
default:
z.scale_RGBA_Image_Over(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Over(dst, dr, adr, src, sr, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.scale_RGBA_Gray_Src(dst, dr, adr, src, sr, &o)
case *image.NRGBA:
z.scale_RGBA_NRGBA_Src(dst, dr, adr, src, sr, &o)
case *image.RGBA:
z.scale_RGBA_RGBA_Src(dst, dr, adr, src, sr, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio444:
z.scale_RGBA_YCbCr444_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio422:
z.scale_RGBA_YCbCr422_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio420:
z.scale_RGBA_YCbCr420_Src(dst, dr, adr, src, sr, &o)
case image.YCbCrSubsampleRatio440:
z.scale_RGBA_YCbCr440_Src(dst, dr, adr, src, sr, &o)
}
default:
z.scale_RGBA_Image_Src(dst, dr, adr, src, sr, &o)
}
default:
switch src := src.(type) {
default:
z.scale_Image_Image_Src(dst, dr, adr, src, sr, &o)
}
}
}
}
}
func (z ablInterpolator) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
// Try to simplify a Transform to a Copy.
if s2d[0] == 1 && s2d[1] == 0 && s2d[3] == 0 && s2d[4] == 1 {
dx := int(s2d[2])
dy := int(s2d[5])
if float64(dx) == s2d[2] && float64(dy) == s2d[5] {
Copy(dst, image.Point{X: sr.Min.X + dx, Y: sr.Min.X + dy}, src, sr, op, opts)
return
}
}
var o Options
if opts != nil {
o = *opts
}
dr := transformRect(&s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
d2s := invert(&s2d)
// bias is a translation of the mapping from dst coordinates to src
// coordinates such that the latter temporarily have non-negative X
// and Y coordinates. This allows us to write int(f) instead of
// int(math.Floor(f)), since "round to zero" and "round down" are
// equivalent when f >= 0, but the former is much cheaper. The X--
// and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
// adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case Src:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
} else if u, ok := src.(*image.Uniform); ok {
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
z.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
default:
z.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
z.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.NRGBA:
z.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.RGBA:
z.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio444:
z.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio422:
z.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio420:
z.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
case image.YCbCrSubsampleRatio440:
z.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
z.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
default:
switch src := src.(type) {
default:
z.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, &o)
}
}
}
}
}
func (ablInterpolator) scale_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.Gray, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00ru := uint32(src.Pix[s00i]) * 0x101
s00r := float64(s00ru)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10ru := uint32(src.Pix[s10i]) * 0x101
s10r := float64(s10ru)
s10r = xFrac1*s00r + xFrac0*s10r
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01ru := uint32(src.Pix[s01i]) * 0x101
s01r := float64(s01ru)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11ru := uint32(src.Pix[s11i]) * 0x101
s11r := float64(s11ru)
s11r = xFrac1*s01r + xFrac0*s11r
s11r = yFrac1*s10r + yFrac0*s11r
pr := uint32(s11r)
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.NRGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.RGBA, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx0)-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(sx1)-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx0))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(sx1))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, src *image.YCbCr, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s00j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sr.Min.Y+int(sy0)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s10j := ((sr.Min.Y+int(sy0))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
s01j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx0) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sr.Min.Y+int(sy1)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
s11j := ((sr.Min.Y+int(sy1))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(sx1) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) scale_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) scale_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) scale_Image_Image_Over(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (ablInterpolator) scale_Image_Image_Src(dst Image, dr, adr image.Rectangle, src image.Image, sr image.Rectangle, opts *Options) {
sw := int32(sr.Dx())
sh := int32(sr.Dy())
yscale := float64(sh) / float64(dr.Dy())
xscale := float64(sw) / float64(dr.Dx())
swMinus1, shMinus1 := sw-1, sh-1
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
sy := (float64(dy)+0.5)*yscale - 0.5
// If sy < 0, we will clamp sy0 to 0 anyway, so it doesn't matter if
// we say int32(sy) instead of int32(math.Floor(sy)). Similarly for
// sx, below.
sy0 := int32(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy1 := sy0 + 1
if sy < 0 {
sy0, sy1 = 0, 0
yFrac0, yFrac1 = 0, 1
} else if sy1 > shMinus1 {
sy0, sy1 = shMinus1, shMinus1
yFrac0, yFrac1 = 1, 0
}
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
sx := (float64(dx)+0.5)*xscale - 0.5
sx0 := int32(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx1 := sx0 + 1
if sx < 0 {
sx0, sx1 = 0, 0
xFrac0, xFrac1 = 0, 1
} else if sx1 > swMinus1 {
sx0, sx1 = swMinus1, swMinus1
xFrac0, xFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy0)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy0)).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sr.Min.X+int(sx0), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx0), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sr.Min.X+int(sx1), sr.Min.Y+int(sy1)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(sx1), smp.Y+sr.Min.Y+int(sy1)).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (ablInterpolator) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
s00ru := uint32(src.Pix[s00i]) * 0x101
s00r := float64(s00ru)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
s10ru := uint32(src.Pix[s10i]) * 0x101
s10r := float64(s10ru)
s10r = xFrac1*s00r + xFrac0*s10r
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0 - src.Rect.Min.X)
s01ru := uint32(src.Pix[s01i]) * 0x101
s01r := float64(s01ru)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1 - src.Rect.Min.X)
s11ru := uint32(src.Pix[s11i]) * 0x101
s11r := float64(s11ru)
s11r = xFrac1*s01r + xFrac0*s11r
s11r = yFrac1*s10r + yFrac0*s11r
pr := uint32(s11r)
out := uint8(pr >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00ru := uint32(src.Pix[s00i+0]) * s00au / 0xff
s00gu := uint32(src.Pix[s00i+1]) * s00au / 0xff
s00bu := uint32(src.Pix[s00i+2]) * s00au / 0xff
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10ru := uint32(src.Pix[s10i+0]) * s10au / 0xff
s10gu := uint32(src.Pix[s10i+1]) * s10au / 0xff
s10bu := uint32(src.Pix[s10i+2]) * s10au / 0xff
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01ru := uint32(src.Pix[s01i+0]) * s01au / 0xff
s01gu := uint32(src.Pix[s01i+1]) * s01au / 0xff
s01bu := uint32(src.Pix[s01i+2]) * s01au / 0xff
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11ru := uint32(src.Pix[s11i+0]) * s11au / 0xff
s11gu := uint32(src.Pix[s11i+1]) * s11au / 0xff
s11bu := uint32(src.Pix[s11i+2]) * s11au / 0xff
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s00ru := uint32(src.Pix[s00i+0]) * 0x101
s00gu := uint32(src.Pix[s00i+1]) * 0x101
s00bu := uint32(src.Pix[s00i+2]) * 0x101
s00au := uint32(src.Pix[s00i+3]) * 0x101
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10i := (sy0-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s10ru := uint32(src.Pix[s10i+0]) * 0x101
s10gu := uint32(src.Pix[s10i+1]) * 0x101
s10bu := uint32(src.Pix[s10i+2]) * 0x101
s10au := uint32(src.Pix[s10i+3]) * 0x101
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01i := (sy1-src.Rect.Min.Y)*src.Stride + (sx0-src.Rect.Min.X)*4
s01ru := uint32(src.Pix[s01i+0]) * 0x101
s01gu := uint32(src.Pix[s01i+1]) * 0x101
s01bu := uint32(src.Pix[s01i+2]) * 0x101
s01au := uint32(src.Pix[s01i+3]) * 0x101
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11i := (sy1-src.Rect.Min.Y)*src.Stride + (sx1-src.Rect.Min.X)*4
s11ru := uint32(src.Pix[s11i+0]) * 0x101
s11gu := uint32(src.Pix[s11i+1]) * 0x101
s11bu := uint32(src.Pix[s11i+2]) * 0x101
s11au := uint32(src.Pix[s11i+3]) * 0x101
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := (sy0-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := (sy0-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := (sy1-src.Rect.Min.Y)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := (sy1-src.Rect.Min.Y)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := (sy0-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := (sy1-src.Rect.Min.Y)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx0)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + ((sx1)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00i := (sy0-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s00j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s00yy1 := int(src.Y[s00i]) * 0x10100
s00cb1 := int(src.Cb[s00j]) - 128
s00cr1 := int(src.Cr[s00j]) - 128
s00ru := (s00yy1 + 91881*s00cr1) >> 8
s00gu := (s00yy1 - 22554*s00cb1 - 46802*s00cr1) >> 8
s00bu := (s00yy1 + 116130*s00cb1) >> 8
if s00ru < 0 {
s00ru = 0
} else if s00ru > 0xffff {
s00ru = 0xffff
}
if s00gu < 0 {
s00gu = 0
} else if s00gu > 0xffff {
s00gu = 0xffff
}
if s00bu < 0 {
s00bu = 0
} else if s00bu > 0xffff {
s00bu = 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s10i := (sy0-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s10j := ((sy0)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s10yy1 := int(src.Y[s10i]) * 0x10100
s10cb1 := int(src.Cb[s10j]) - 128
s10cr1 := int(src.Cr[s10j]) - 128
s10ru := (s10yy1 + 91881*s10cr1) >> 8
s10gu := (s10yy1 - 22554*s10cb1 - 46802*s10cr1) >> 8
s10bu := (s10yy1 + 116130*s10cb1) >> 8
if s10ru < 0 {
s10ru = 0
} else if s10ru > 0xffff {
s10ru = 0xffff
}
if s10gu < 0 {
s10gu = 0
} else if s10gu > 0xffff {
s10gu = 0xffff
}
if s10bu < 0 {
s10bu = 0
} else if s10bu > 0xffff {
s10bu = 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s01i := (sy1-src.Rect.Min.Y)*src.YStride + (sx0 - src.Rect.Min.X)
s01j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx0 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s01yy1 := int(src.Y[s01i]) * 0x10100
s01cb1 := int(src.Cb[s01j]) - 128
s01cr1 := int(src.Cr[s01j]) - 128
s01ru := (s01yy1 + 91881*s01cr1) >> 8
s01gu := (s01yy1 - 22554*s01cb1 - 46802*s01cr1) >> 8
s01bu := (s01yy1 + 116130*s01cb1) >> 8
if s01ru < 0 {
s01ru = 0
} else if s01ru > 0xffff {
s01ru = 0xffff
}
if s01gu < 0 {
s01gu = 0
} else if s01gu > 0xffff {
s01gu = 0xffff
}
if s01bu < 0 {
s01bu = 0
} else if s01bu > 0xffff {
s01bu = 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s11i := (sy1-src.Rect.Min.Y)*src.YStride + (sx1 - src.Rect.Min.X)
s11j := ((sy1)/2-src.Rect.Min.Y/2)*src.CStride + (sx1 - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
s11yy1 := int(src.Y[s11i]) * 0x10100
s11cb1 := int(src.Cb[s11j]) - 128
s11cr1 := int(src.Cr[s11j]) - 128
s11ru := (s11yy1 + 91881*s11cr1) >> 8
s11gu := (s11yy1 - 22554*s11cb1 - 46802*s11cr1) >> 8
s11bu := (s11yy1 + 116130*s11cb1) >> 8
if s11ru < 0 {
s11ru = 0
} else if s11ru > 0xffff {
s11ru = 0xffff
}
if s11gu < 0 {
s11gu = 0
} else if s11gu > 0xffff {
s11gu = 0xffff
}
if s11bu < 0 {
s11bu = 0
} else if s11bu > 0xffff {
s11bu = 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (ablInterpolator) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
pa1 := (0xffff - pa) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa) >> 8)
}
}
}
func (ablInterpolator) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
dst.Pix[d+0] = uint8(pr >> 8)
dst.Pix[d+1] = uint8(pg >> 8)
dst.Pix[d+2] = uint8(pb >> 8)
dst.Pix[d+3] = uint8(pa >> 8)
}
}
}
func (ablInterpolator) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
}
pa1 := 0xffff - pa
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (ablInterpolator) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, opts *Options) {
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
sx -= 0.5
sx0 := int(sx)
xFrac0 := sx - float64(sx0)
xFrac1 := 1 - xFrac0
sx0 += bias.X
sx1 := sx0 + 1
if sx0 < sr.Min.X {
sx0, sx1 = sr.Min.X, sr.Min.X
xFrac0, xFrac1 = 0, 1
} else if sx1 >= sr.Max.X {
sx0, sx1 = sr.Max.X-1, sr.Max.X-1
xFrac0, xFrac1 = 1, 0
}
sy -= 0.5
sy0 := int(sy)
yFrac0 := sy - float64(sy0)
yFrac1 := 1 - yFrac0
sy0 += bias.Y
sy1 := sy0 + 1
if sy0 < sr.Min.Y {
sy0, sy1 = sr.Min.Y, sr.Min.Y
yFrac0, yFrac1 = 0, 1
} else if sy1 >= sr.Max.Y {
sy0, sy1 = sr.Max.Y-1, sr.Max.Y-1
yFrac0, yFrac1 = 1, 0
}
s00ru, s00gu, s00bu, s00au := src.At(sx0, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy0).RGBA()
s00ru = s00ru * ma / 0xffff
s00gu = s00gu * ma / 0xffff
s00bu = s00bu * ma / 0xffff
s00au = s00au * ma / 0xffff
}
s00r := float64(s00ru)
s00g := float64(s00gu)
s00b := float64(s00bu)
s00a := float64(s00au)
s10ru, s10gu, s10bu, s10au := src.At(sx1, sy0).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy0).RGBA()
s10ru = s10ru * ma / 0xffff
s10gu = s10gu * ma / 0xffff
s10bu = s10bu * ma / 0xffff
s10au = s10au * ma / 0xffff
}
s10r := float64(s10ru)
s10g := float64(s10gu)
s10b := float64(s10bu)
s10a := float64(s10au)
s10r = xFrac1*s00r + xFrac0*s10r
s10g = xFrac1*s00g + xFrac0*s10g
s10b = xFrac1*s00b + xFrac0*s10b
s10a = xFrac1*s00a + xFrac0*s10a
s01ru, s01gu, s01bu, s01au := src.At(sx0, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx0, smp.Y+sy1).RGBA()
s01ru = s01ru * ma / 0xffff
s01gu = s01gu * ma / 0xffff
s01bu = s01bu * ma / 0xffff
s01au = s01au * ma / 0xffff
}
s01r := float64(s01ru)
s01g := float64(s01gu)
s01b := float64(s01bu)
s01a := float64(s01au)
s11ru, s11gu, s11bu, s11au := src.At(sx1, sy1).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sx1, smp.Y+sy1).RGBA()
s11ru = s11ru * ma / 0xffff
s11gu = s11gu * ma / 0xffff
s11bu = s11bu * ma / 0xffff
s11au = s11au * ma / 0xffff
}
s11r := float64(s11ru)
s11g := float64(s11gu)
s11b := float64(s11bu)
s11a := float64(s11au)
s11r = xFrac1*s01r + xFrac0*s11r
s11g = xFrac1*s01g + xFrac0*s11g
s11b = xFrac1*s01b + xFrac0*s11b
s11a = xFrac1*s01a + xFrac0*s11a
s11r = yFrac1*s10r + yFrac0*s11r
s11g = yFrac1*s10g + yFrac0*s11g
s11b = yFrac1*s10b + yFrac0*s11b
s11a = yFrac1*s10a + yFrac0*s11a
pr := uint32(s11r)
pg := uint32(s11g)
pb := uint32(s11b)
pa := uint32(s11a)
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr = pr * ma / 0xffff
pg = pg * ma / 0xffff
pb = pb * ma / 0xffff
pa = pa * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = uint16(pr)
dstColorRGBA64.G = uint16(pg)
dstColorRGBA64.B = uint16(pb)
dstColorRGBA64.A = uint16(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}
func (z *kernelScaler) Scale(dst Image, dr image.Rectangle, src image.Image, sr image.Rectangle, op Op, opts *Options) {
if z.dw != int32(dr.Dx()) || z.dh != int32(dr.Dy()) || z.sw != int32(sr.Dx()) || z.sh != int32(sr.Dy()) {
z.kernel.Scale(dst, dr, src, sr, op, opts)
return
}
var o Options
if opts != nil {
o = *opts
}
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
if _, ok := src.(*image.Uniform); ok && o.DstMask == nil && o.SrcMask == nil && sr.In(src.Bounds()) {
Draw(dst, dr, src, src.Bounds().Min, op)
return
}
// Create a temporary buffer:
// scaleX distributes the source image's columns over the temporary image.
// scaleY distributes the temporary image's rows over the destination image.
var tmp [][4]float64
if z.pool.New != nil {
tmpp := z.pool.Get().(*[][4]float64)
defer z.pool.Put(tmpp)
tmp = *tmpp
} else {
tmp = z.makeTmpBuf()
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.SrcMask != nil || !sr.In(src.Bounds()) {
z.scaleX_Image(tmp, src, sr, &o)
} else {
switch src := src.(type) {
case *image.Gray:
z.scaleX_Gray(tmp, src, sr, &o)
case *image.NRGBA:
z.scaleX_NRGBA(tmp, src, sr, &o)
case *image.RGBA:
z.scaleX_RGBA(tmp, src, sr, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
z.scaleX_Image(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio444:
z.scaleX_YCbCr444(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio422:
z.scaleX_YCbCr422(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio420:
z.scaleX_YCbCr420(tmp, src, sr, &o)
case image.YCbCrSubsampleRatio440:
z.scaleX_YCbCr440(tmp, src, sr, &o)
}
default:
z.scaleX_Image(tmp, src, sr, &o)
}
}
if o.DstMask != nil {
switch op {
case Over:
z.scaleY_Image_Over(dst, dr, adr, tmp, &o)
case Src:
z.scaleY_Image_Src(dst, dr, adr, tmp, &o)
}
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
z.scaleY_RGBA_Over(dst, dr, adr, tmp, &o)
default:
z.scaleY_Image_Over(dst, dr, adr, tmp, &o)
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
z.scaleY_RGBA_Src(dst, dr, adr, tmp, &o)
default:
z.scaleY_Image_Src(dst, dr, adr, tmp, &o)
}
}
}
}
func (q *Kernel) Transform(dst Image, s2d f64.Aff3, src image.Image, sr image.Rectangle, op Op, opts *Options) {
var o Options
if opts != nil {
o = *opts
}
dr := transformRect(&s2d, &sr)
// adr is the affected destination pixels.
adr := dst.Bounds().Intersect(dr)
adr, o.DstMask = clipAffectedDestRect(adr, o.DstMask, o.DstMaskP)
if adr.Empty() || sr.Empty() {
return
}
if op == Over && o.SrcMask == nil && opaque(src) {
op = Src
}
d2s := invert(&s2d)
// bias is a translation of the mapping from dst coordinates to src
// coordinates such that the latter temporarily have non-negative X
// and Y coordinates. This allows us to write int(f) instead of
// int(math.Floor(f)), since "round to zero" and "round down" are
// equivalent when f >= 0, but the former is much cheaper. The X--
// and Y-- are because the TransformLeaf methods have a "sx -= 0.5"
// adjustment.
bias := transformRect(&d2s, &adr).Min
bias.X--
bias.Y--
d2s[2] -= float64(bias.X)
d2s[5] -= float64(bias.Y)
// Make adr relative to dr.Min.
adr = adr.Sub(dr.Min)
if u, ok := src.(*image.Uniform); ok && o.DstMask != nil && o.SrcMask != nil && sr.In(src.Bounds()) {
transform_Uniform(dst, dr, adr, &d2s, u, sr, bias, op)
return
}
xscale := abs(d2s[0])
if s := abs(d2s[1]); xscale < s {
xscale = s
}
yscale := abs(d2s[3])
if s := abs(d2s[4]); yscale < s {
yscale = s
}
// sr is the source pixels. If it extends beyond the src bounds,
// we cannot use the type-specific fast paths, as they access
// the Pix fields directly without bounds checking.
//
// Similarly, the fast paths assume that the masks are nil.
if o.DstMask != nil || o.SrcMask != nil || !sr.In(src.Bounds()) {
switch op {
case Over:
q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case Src:
q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
} else {
switch op {
case Over:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.NRGBA:
q.transform_RGBA_NRGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.RGBA:
q.transform_RGBA_RGBA_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
default:
q.transform_RGBA_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
default:
switch src := src.(type) {
default:
q.transform_Image_Image_Over(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
}
case Src:
switch dst := dst.(type) {
case *image.RGBA:
switch src := src.(type) {
case *image.Gray:
q.transform_RGBA_Gray_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.NRGBA:
q.transform_RGBA_NRGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.RGBA:
q.transform_RGBA_RGBA_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case *image.YCbCr:
switch src.SubsampleRatio {
default:
q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio444:
q.transform_RGBA_YCbCr444_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio422:
q.transform_RGBA_YCbCr422_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio420:
q.transform_RGBA_YCbCr420_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
case image.YCbCrSubsampleRatio440:
q.transform_RGBA_YCbCr440_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
default:
q.transform_RGBA_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
default:
switch src := src.(type) {
default:
q.transform_Image_Image_Src(dst, dr, adr, &d2s, src, sr, bias, xscale, yscale, &o)
}
}
}
}
}
func (z *kernelScaler) scaleX_Gray(tmp [][4]float64, src *image.Gray, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pru := uint32(src.Pix[pi]) * 0x101
pr += float64(pru) * c.weight
}
pr *= s.invTotalWeightFFFF
tmp[t] = [4]float64{
pr,
pr,
pr,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_NRGBA(tmp [][4]float64, src *image.NRGBA, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleX_RGBA(tmp [][4]float64, src *image.RGBA, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.Stride + (sr.Min.X+int(c.coord)-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr444(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr422(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr420(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + ((sr.Min.X+int(c.coord))/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_YCbCr440(tmp [][4]float64, src *image.YCbCr, sr image.Rectangle, opts *Options) {
t := 0
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pi := (sr.Min.Y+int(y)-src.Rect.Min.Y)*src.YStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
pj := ((sr.Min.Y+int(y))/2-src.Rect.Min.Y/2)*src.CStride + (sr.Min.X + int(c.coord) - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
1,
}
t++
}
}
}
func (z *kernelScaler) scaleX_Image(tmp [][4]float64, src image.Image, sr image.Rectangle, opts *Options) {
t := 0
srcMask, smp := opts.SrcMask, opts.SrcMaskP
for y := int32(0); y < z.sh; y++ {
for _, s := range z.horizontal.sources {
var pr, pg, pb, pa float64
for _, c := range z.horizontal.contribs[s.i:s.j] {
pru, pgu, pbu, pau := src.At(sr.Min.X+int(c.coord), sr.Min.Y+int(y)).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+sr.Min.X+int(c.coord), smp.Y+sr.Min.Y+int(y)).RGBA()
pru = pru * ma / 0xffff
pgu = pgu * ma / 0xffff
pbu = pbu * ma / 0xffff
pau = pau * ma / 0xffff
}
pr += float64(pru) * c.weight
pg += float64(pgu) * c.weight
pb += float64(pbu) * c.weight
pa += float64(pau) * c.weight
}
tmp[t] = [4]float64{
pr * s.invTotalWeightFFFF,
pg * s.invTotalWeightFFFF,
pb * s.invTotalWeightFFFF,
pa * s.invTotalWeightFFFF,
}
t++
}
}
}
func (z *kernelScaler) scaleY_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4
for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(ftou(pr * s.invTotalWeight))
pg0 := uint32(ftou(pg * s.invTotalWeight))
pb0 := uint32(ftou(pb * s.invTotalWeight))
pa0 := uint32(ftou(pa * s.invTotalWeight))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
d += dst.Stride
}
}
}
func (z *kernelScaler) scaleY_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
d := (dr.Min.Y+adr.Min.Y-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+int(dx)-dst.Rect.Min.X)*4
for _, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(ftou(pr*s.invTotalWeight) >> 8)
dst.Pix[d+1] = uint8(ftou(pg*s.invTotalWeight) >> 8)
dst.Pix[d+2] = uint8(ftou(pb*s.invTotalWeight) >> 8)
dst.Pix[d+3] = uint8(ftou(pa*s.invTotalWeight) >> 8)
d += dst.Stride
}
}
}
func (z *kernelScaler) scaleY_Image_Over(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
pr0 := uint32(ftou(pr * s.invTotalWeight))
pg0 := uint32(ftou(pg * s.invTotalWeight))
pb0 := uint32(ftou(pb * s.invTotalWeight))
pa0 := uint32(ftou(pa * s.invTotalWeight))
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
pr0 = pr0 * ma / 0xffff
pg0 = pg0 * ma / 0xffff
pb0 = pb0 * ma / 0xffff
pa0 = pa0 * ma / 0xffff
}
pa1 := 0xffff - pa0
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
}
}
}
func (z *kernelScaler) scaleY_Image_Src(dst Image, dr, adr image.Rectangle, tmp [][4]float64, opts *Options) {
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
for dy, s := range z.vertical.sources[adr.Min.Y:adr.Max.Y] {
var pr, pg, pb, pa float64
for _, c := range z.vertical.contribs[s.i:s.j] {
p := &tmp[c.coord*z.dw+dx]
pr += p[0] * c.weight
pg += p[1] * c.weight
pb += p[2] * c.weight
pa += p[3] * c.weight
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(adr.Min.Y+dy)).RGBA()
pr := uint32(ftou(pr*s.invTotalWeight)) * ma / 0xffff
pg := uint32(ftou(pg*s.invTotalWeight)) * ma / 0xffff
pb := uint32(ftou(pb*s.invTotalWeight)) * ma / 0xffff
pa := uint32(ftou(pa*s.invTotalWeight)) * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
} else {
dstColorRGBA64.R = ftou(pr * s.invTotalWeight)
dstColorRGBA64.G = ftou(pg * s.invTotalWeight)
dstColorRGBA64.B = ftou(pb * s.invTotalWeight)
dstColorRGBA64.A = ftou(pa * s.invTotalWeight)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(adr.Min.Y+dy), dstColor)
}
}
}
}
func (q *Kernel) transform_RGBA_Gray_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.Gray, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx - src.Rect.Min.X)
pru := uint32(src.Pix[pi]) * 0x101
pr += float64(pru) * w
}
}
}
}
out := uint8(fffftou(pr) >> 8)
dst.Pix[d+0] = out
dst.Pix[d+1] = out
dst.Pix[d+2] = out
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_NRGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_NRGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.NRGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pau := uint32(src.Pix[pi+3]) * 0x101
pru := uint32(src.Pix[pi+0]) * pau / 0xff
pgu := uint32(src.Pix[pi+1]) * pau / 0xff
pbu := uint32(src.Pix[pi+2]) * pau / 0xff
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_RGBA_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_RGBA_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.RGBA, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.Stride + (kx-src.Rect.Min.X)*4
pru := uint32(src.Pix[pi+0]) * 0x101
pgu := uint32(src.Pix[pi+1]) * 0x101
pbu := uint32(src.Pix[pi+2]) * 0x101
pau := uint32(src.Pix[pi+3]) * 0x101
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_YCbCr444_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := (ky-src.Rect.Min.Y)*src.CStride + (kx - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr422_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := (ky-src.Rect.Min.Y)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr420_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + ((kx)/2 - src.Rect.Min.X/2)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_YCbCr440_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src *image.YCbCr, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pi := (ky-src.Rect.Min.Y)*src.YStride + (kx - src.Rect.Min.X)
pj := ((ky)/2-src.Rect.Min.Y/2)*src.CStride + (kx - src.Rect.Min.X)
// This is an inline version of image/color/ycbcr.go's YCbCr.RGBA method.
pyy1 := int(src.Y[pi]) * 0x10100
pcb1 := int(src.Cb[pj]) - 128
pcr1 := int(src.Cr[pj]) - 128
pru := (pyy1 + 91881*pcr1) >> 8
pgu := (pyy1 - 22554*pcb1 - 46802*pcr1) >> 8
pbu := (pyy1 + 116130*pcb1) >> 8
if pru < 0 {
pru = 0
} else if pru > 0xffff {
pru = 0xffff
}
if pgu < 0 {
pgu = 0
} else if pgu > 0xffff {
pgu = 0xffff
}
if pbu < 0 {
pbu = 0
} else if pbu > 0xffff {
pbu = 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
}
}
}
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = 0xff
}
}
}
func (q *Kernel) transform_RGBA_Image_Over(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
pa1 := (0xffff - uint32(pa0)) * 0x101
dst.Pix[d+0] = uint8((uint32(dst.Pix[d+0])*pa1/0xffff + pr0) >> 8)
dst.Pix[d+1] = uint8((uint32(dst.Pix[d+1])*pa1/0xffff + pg0) >> 8)
dst.Pix[d+2] = uint8((uint32(dst.Pix[d+2])*pa1/0xffff + pb0) >> 8)
dst.Pix[d+3] = uint8((uint32(dst.Pix[d+3])*pa1/0xffff + pa0) >> 8)
}
}
}
func (q *Kernel) transform_RGBA_Image_Src(dst *image.RGBA, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
d := (dr.Min.Y+int(dy)-dst.Rect.Min.Y)*dst.Stride + (dr.Min.X+adr.Min.X-dst.Rect.Min.X)*4
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx, d = dx+1, d+4 {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
dst.Pix[d+0] = uint8(fffftou(pr) >> 8)
dst.Pix[d+1] = uint8(fffftou(pg) >> 8)
dst.Pix[d+2] = uint8(fffftou(pb) >> 8)
dst.Pix[d+3] = uint8(fffftou(pa) >> 8)
}
}
}
func (q *Kernel) transform_Image_Image_Over(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA()
pru = pru * ma / 0xffff
pgu = pgu * ma / 0xffff
pbu = pbu * ma / 0xffff
pau = pau * ma / 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
pr0 := uint32(fffftou(pr))
pg0 := uint32(fffftou(pg))
pb0 := uint32(fffftou(pb))
pa0 := uint32(fffftou(pa))
if dstMask != nil {
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr0 = pr0 * ma / 0xffff
pg0 = pg0 * ma / 0xffff
pb0 = pb0 * ma / 0xffff
pa0 = pa0 * ma / 0xffff
}
pa1 := 0xffff - pa0
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr0)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg0)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb0)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa0)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
func (q *Kernel) transform_Image_Image_Src(dst Image, dr, adr image.Rectangle, d2s *f64.Aff3, src image.Image, sr image.Rectangle, bias image.Point, xscale, yscale float64, opts *Options) {
// When shrinking, broaden the effective kernel support so that we still
// visit every source pixel.
xHalfWidth, xKernelArgScale := q.Support, 1.0
if xscale > 1 {
xHalfWidth *= xscale
xKernelArgScale = 1 / xscale
}
yHalfWidth, yKernelArgScale := q.Support, 1.0
if yscale > 1 {
yHalfWidth *= yscale
yKernelArgScale = 1 / yscale
}
xWeights := make([]float64, 1+2*int(math.Ceil(xHalfWidth)))
yWeights := make([]float64, 1+2*int(math.Ceil(yHalfWidth)))
srcMask, smp := opts.SrcMask, opts.SrcMaskP
dstMask, dmp := opts.DstMask, opts.DstMaskP
dstColorRGBA64 := &color.RGBA64{}
dstColor := color.Color(dstColorRGBA64)
for dy := int32(adr.Min.Y); dy < int32(adr.Max.Y); dy++ {
dyf := float64(dr.Min.Y+int(dy)) + 0.5
for dx := int32(adr.Min.X); dx < int32(adr.Max.X); dx++ {
dxf := float64(dr.Min.X+int(dx)) + 0.5
sx := d2s[0]*dxf + d2s[1]*dyf + d2s[2]
sy := d2s[3]*dxf + d2s[4]*dyf + d2s[5]
if !(image.Point{int(sx) + bias.X, int(sy) + bias.Y}).In(sr) {
continue
}
// TODO: adjust the bias so that we can use int(f) instead
// of math.Floor(f) and math.Ceil(f).
sx += float64(bias.X)
sx -= 0.5
ix := int(math.Floor(sx - xHalfWidth))
if ix < sr.Min.X {
ix = sr.Min.X
}
jx := int(math.Ceil(sx + xHalfWidth))
if jx > sr.Max.X {
jx = sr.Max.X
}
totalXWeight := 0.0
for kx := ix; kx < jx; kx++ {
xWeight := 0.0
if t := abs((sx - float64(kx)) * xKernelArgScale); t < q.Support {
xWeight = q.At(t)
}
xWeights[kx-ix] = xWeight
totalXWeight += xWeight
}
for x := range xWeights[:jx-ix] {
xWeights[x] /= totalXWeight
}
sy += float64(bias.Y)
sy -= 0.5
iy := int(math.Floor(sy - yHalfWidth))
if iy < sr.Min.Y {
iy = sr.Min.Y
}
jy := int(math.Ceil(sy + yHalfWidth))
if jy > sr.Max.Y {
jy = sr.Max.Y
}
totalYWeight := 0.0
for ky := iy; ky < jy; ky++ {
yWeight := 0.0
if t := abs((sy - float64(ky)) * yKernelArgScale); t < q.Support {
yWeight = q.At(t)
}
yWeights[ky-iy] = yWeight
totalYWeight += yWeight
}
for y := range yWeights[:jy-iy] {
yWeights[y] /= totalYWeight
}
var pr, pg, pb, pa float64
for ky := iy; ky < jy; ky++ {
if yWeight := yWeights[ky-iy]; yWeight != 0 {
for kx := ix; kx < jx; kx++ {
if w := xWeights[kx-ix] * yWeight; w != 0 {
pru, pgu, pbu, pau := src.At(kx, ky).RGBA()
if srcMask != nil {
_, _, _, ma := srcMask.At(smp.X+kx, smp.Y+ky).RGBA()
pru = pru * ma / 0xffff
pgu = pgu * ma / 0xffff
pbu = pbu * ma / 0xffff
pau = pau * ma / 0xffff
}
pr += float64(pru) * w
pg += float64(pgu) * w
pb += float64(pbu) * w
pa += float64(pau) * w
}
}
}
}
if pr > pa {
pr = pa
}
if pg > pa {
pg = pa
}
if pb > pa {
pb = pa
}
if dstMask != nil {
qr, qg, qb, qa := dst.At(dr.Min.X+int(dx), dr.Min.Y+int(dy)).RGBA()
_, _, _, ma := dstMask.At(dmp.X+dr.Min.X+int(dx), dmp.Y+dr.Min.Y+int(dy)).RGBA()
pr := uint32(fffftou(pr)) * ma / 0xffff
pg := uint32(fffftou(pg)) * ma / 0xffff
pb := uint32(fffftou(pb)) * ma / 0xffff
pa := uint32(fffftou(pa)) * ma / 0xffff
pa1 := 0xffff - ma
dstColorRGBA64.R = uint16(qr*pa1/0xffff + pr)
dstColorRGBA64.G = uint16(qg*pa1/0xffff + pg)
dstColorRGBA64.B = uint16(qb*pa1/0xffff + pb)
dstColorRGBA64.A = uint16(qa*pa1/0xffff + pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
} else {
dstColorRGBA64.R = fffftou(pr)
dstColorRGBA64.G = fffftou(pg)
dstColorRGBA64.B = fffftou(pb)
dstColorRGBA64.A = fffftou(pa)
dst.Set(dr.Min.X+int(dx), dr.Min.Y+int(dy), dstColor)
}
}
}
}