1
0
Fork 0
mirror of https://github.com/Luzifer/staticmap.git synced 2025-01-07 21:41:50 +00:00
staticmap/vendor/github.com/tkrajina/gpxgo/gpx/geo.go

358 lines
9.4 KiB
Go
Raw Normal View History

// Copyright 2013, 2014 Peter Vasil, Tomo Krajina. All
// rights reserved. Use of this source code is governed
// by a BSD-style license that can be found in the
// LICENSE file.
package gpx
import (
"math"
"sort"
)
const oneDegree = 1000.0 * 10000.8 / 90.0
const earthRadius = 6371 * 1000
func ToRad(x float64) float64 {
return x / 180. * math.Pi
}
type Location interface {
GetLatitude() float64
GetLongitude() float64
GetElevation() NullableFloat64
}
type MovingData struct {
MovingTime float64
StoppedTime float64
MovingDistance float64
StoppedDistance float64
MaxSpeed float64
}
func (md MovingData) Equals(md2 MovingData) bool {
return md.MovingTime == md2.MovingTime &&
md.MovingDistance == md2.MovingDistance &&
md.StoppedTime == md2.StoppedTime &&
md.StoppedDistance == md2.StoppedDistance &&
md.MaxSpeed == md.MaxSpeed
}
type SpeedsAndDistances struct {
Speed float64
Distance float64
}
// HaversineDistance returns the haversine distance between two points.
//
// Implemented from http://www.movable-type.co.uk/scripts/latlong.html
func HaversineDistance(lat1, lon1, lat2, lon2 float64) float64 {
dLat := ToRad(lat1 - lat2)
dLon := ToRad(lon1 - lon2)
thisLat1 := ToRad(lat1)
thisLat2 := ToRad(lat2)
a := math.Sin(dLat/2)*math.Sin(dLat/2) + math.Sin(dLon/2)*math.Sin(dLon/2)*math.Cos(thisLat1)*math.Cos(thisLat2)
c := 2 * math.Atan2(math.Sqrt(a), math.Sqrt(1-a))
d := earthRadius * c
return d
}
func length(locs []Point, threeD bool) float64 {
var previousLoc Point
var res float64
for k, v := range locs {
if k > 0 {
previousLoc = locs[k-1]
var d float64
if threeD {
d = v.Distance3D(&previousLoc)
} else {
d = v.Distance2D(&previousLoc)
}
res += d
}
}
return res
}
func Length2D(locs []Point) float64 {
return length(locs, false)
}
func Length3D(locs []Point) float64 {
return length(locs, true)
}
func CalcMaxSpeed(speedsDistances []SpeedsAndDistances) float64 {
lenArrs := len(speedsDistances)
if len(speedsDistances) < 20 {
//log.Println("Segment too small to compute speed, size: ", lenArrs)
return 0.0
}
var sum_dists float64
for _, d := range speedsDistances {
sum_dists += d.Distance
}
average_dist := sum_dists / float64(lenArrs)
var variance float64
for i := 0; i < len(speedsDistances); i++ {
variance += math.Pow(speedsDistances[i].Distance-average_dist, 2)
}
stdDeviation := math.Sqrt(variance)
// ignore items with distance too long
filteredSD := make([]SpeedsAndDistances, 0)
for i := 0; i < len(speedsDistances); i++ {
dist := math.Abs(speedsDistances[i].Distance - average_dist)
if dist <= stdDeviation*1.5 {
filteredSD = append(filteredSD, speedsDistances[i])
}
}
speeds := make([]float64, len(filteredSD))
for i, sd := range filteredSD {
speeds[i] = sd.Speed
}
speedsSorted := sort.Float64Slice(speeds)
if len(speedsSorted) == 0 {
return 0
}
maxIdx := int(float64(len(speedsSorted)) * 0.95)
if maxIdx >= len(speedsSorted) {
maxIdx = len(speedsSorted) - 1
}
if maxIdx < 0 {
maxIdx = 0
}
return speedsSorted[maxIdx]
}
func CalcUphillDownhill(elevations []NullableFloat64) (float64, float64) {
elevsLen := len(elevations)
if elevsLen == 0 {
return 0.0, 0.0
}
smoothElevations := make([]NullableFloat64, elevsLen)
for i, elev := range elevations {
currEle := elev
if 0 < i && i < elevsLen-1 {
prevEle := elevations[i-1]
nextEle := elevations[i+1]
if prevEle.NotNull() && nextEle.NotNull() && elev.NotNull() {
currEle = *NewNullableFloat64(prevEle.Value()*0.3 + elev.Value()*0.4 + nextEle.Value()*0.3)
}
}
smoothElevations[i] = currEle
}
var uphill float64
var downhill float64
for i := 1; i < len(smoothElevations); i++ {
if smoothElevations[i].NotNull() && smoothElevations[i-1].NotNull() {
d := smoothElevations[i].Value() - smoothElevations[i-1].Value()
if d > 0.0 {
uphill += d
} else {
downhill -= d
}
}
}
return uphill, downhill
}
func distance(lat1, lon1 float64, ele1 NullableFloat64, lat2, lon2 float64, ele2 NullableFloat64, threeD, haversine bool) float64 {
absLat := math.Abs(lat1 - lat2)
absLon := math.Abs(lon1 - lon2)
if haversine || absLat > 0.2 || absLon > 0.2 {
return HaversineDistance(lat1, lon1, lat2, lon2)
}
coef := math.Cos(ToRad(lat1))
x := lat1 - lat2
y := (lon1 - lon2) * coef
distance2d := math.Sqrt(x*x+y*y) * oneDegree
if !threeD || ele1 == ele2 {
return distance2d
}
eleDiff := 0.0
if ele1.NotNull() && ele2.NotNull() {
eleDiff = ele1.Value() - ele2.Value()
}
return math.Sqrt(math.Pow(distance2d, 2) + math.Pow(eleDiff, 2))
}
func distanceBetweenLocations(loc1, loc2 Location, threeD, haversine bool) float64 {
lat1 := loc1.GetLatitude()
lon1 := loc1.GetLongitude()
ele1 := loc1.GetElevation()
lat2 := loc2.GetLatitude()
lon2 := loc2.GetLongitude()
ele2 := loc2.GetElevation()
return distance(lat1, lon1, ele1, lat2, lon2, ele2, threeD, haversine)
}
func Distance2D(lat1, lon1, lat2, lon2 float64, haversine bool) float64 {
return distance(lat1, lon1, *new(NullableFloat64), lat2, lon2, *new(NullableFloat64), false, haversine)
}
func Distance3D(lat1, lon1 float64, ele1 NullableFloat64, lat2, lon2 float64, ele2 NullableFloat64, haversine bool) float64 {
return distance(lat1, lon1, ele1, lat2, lon2, ele2, true, haversine)
}
func ElevationAngle(loc1, loc2 Point, radians bool) float64 {
if loc1.Elevation.Null() || loc2.Elevation.Null() {
return 0.0
}
b := loc2.Elevation.Value() - loc1.Elevation.Value()
a := loc2.Distance2D(&loc1)
if a == 0.0 {
return 0.0
}
angle := math.Atan(b / a)
if radians {
return angle
}
return 180 * angle / math.Pi
}
// Distance of point from a line given with two points.
func distanceFromLine(point Point, linePoint1, linePoint2 GPXPoint) float64 {
a := linePoint1.Distance2D(&linePoint2)
if a == 0 {
return linePoint1.Distance2D(&point)
}
b := linePoint1.Distance2D(&point)
c := linePoint2.Distance2D(&point)
s := (a + b + c) / 2.
return 2.0 * math.Sqrt(math.Abs((s * (s - a) * (s - b) * (s - c)))) / a
}
func getLineEquationCoefficients(location1, location2 Point) (float64, float64, float64) {
if location1.Longitude == location2.Longitude {
// Vertical line:
return 0.0, 1.0, -location1.Longitude
} else {
a := (location1.Latitude - location2.Latitude) / (location1.Longitude - location2.Longitude)
b := location1.Latitude - location1.Longitude*a
return 1.0, -a, -b
}
}
func simplifyPoints(points []GPXPoint, maxDistance float64) []GPXPoint {
if len(points) < 3 {
return points
}
begin, end := points[0], points[len(points)-1]
/*
Use a "normal" line just to detect the most distant point (not its real distance)
this is because this is faster to compute than calling distance_from_line() for
every point.
This is an approximation and may have some errors near the poles and if
the points are too distant, but it should be good enough for most use
cases...
*/
a, b, c := getLineEquationCoefficients(begin.Point, end.Point)
tmpMaxDistance := -1000000000.0
tmpMaxDistancePosition := 0
for pointNo, point := range points {
d := math.Abs(a*point.Latitude + b*point.Longitude + c)
if d > tmpMaxDistance {
tmpMaxDistance = d
tmpMaxDistancePosition = pointNo
}
}
//fmt.Println()
//fmt.Println("tmpMaxDistancePosition=", tmpMaxDistancePosition, " len(points)=", len(points))
realMaxDistance := distanceFromLine(points[tmpMaxDistancePosition].Point, begin, end)
//fmt.Println("realMaxDistance=", realMaxDistance, " len(points)=", len(points))
if realMaxDistance < maxDistance {
return []GPXPoint{begin, end}
}
points1 := points[:tmpMaxDistancePosition]
point := points[tmpMaxDistancePosition]
points2 := points[tmpMaxDistancePosition+1:]
//fmt.Println("before simplify: len_points=", len(points), " l_points1=", len(points1), " l_points2=", len(points2))
points1 = simplifyPoints(points1, maxDistance)
points2 = simplifyPoints(points2, maxDistance)
//fmt.Println("after simplify: len_points=", len(points), " l_points1=", len(points1), " l_points2=", len(points2))
result := append(points1, point)
return append(result, points2...)
}
func smoothHorizontal(originalPoints []GPXPoint) []GPXPoint {
result := make([]GPXPoint, len(originalPoints))
for pointNo, point := range originalPoints {
result[pointNo] = point
if 1 <= pointNo && pointNo <= len(originalPoints)-2 {
previousPoint := originalPoints[pointNo-1]
nextPoint := originalPoints[pointNo+1]
result[pointNo] = point
result[pointNo].Latitude = previousPoint.Latitude*0.4 + point.Latitude*0.2 + nextPoint.Latitude*0.4
result[pointNo].Longitude = previousPoint.Longitude*0.4 + point.Longitude*0.2 + nextPoint.Longitude*0.4
//log.Println("->(%f, %f)", seg.Points[pointNo].Latitude, seg.Points[pointNo].Longitude)
}
}
return result
}
func smoothVertical(originalPoints []GPXPoint) []GPXPoint {
result := make([]GPXPoint, len(originalPoints))
for pointNo, point := range originalPoints {
result[pointNo] = point
if 1 <= pointNo && pointNo <= len(originalPoints)-2 {
previousPointElevation := originalPoints[pointNo-1].Elevation
nextPointElevation := originalPoints[pointNo+1].Elevation
if previousPointElevation.NotNull() && point.Elevation.NotNull() && nextPointElevation.NotNull() {
result[pointNo].Elevation = *NewNullableFloat64(previousPointElevation.Value()*0.4 + point.Elevation.Value()*0.2 + nextPointElevation.Value()*0.4)
//log.Println("->%f", seg.Points[pointNo].Elevation.Value())
}
}
}
return result
}