mirror of
https://github.com/Luzifer/staticmap.git
synced 2025-01-08 13:52:50 +00:00
347 lines
11 KiB
Go
347 lines
11 KiB
Go
|
/*
|
||
|
Copyright 2015 Google Inc. All rights reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License.
|
||
|
*/
|
||
|
|
||
|
package s2
|
||
|
|
||
|
// Polygon represents a sequence of zero or more loops; recall that the
|
||
|
// interior of a loop is defined to be its left-hand side (see Loop).
|
||
|
//
|
||
|
// When the polygon is initialized, the given loops are automatically converted
|
||
|
// into a canonical form consisting of "shells" and "holes". Shells and holes
|
||
|
// are both oriented CCW, and are nested hierarchically. The loops are
|
||
|
// reordered to correspond to a preorder traversal of the nesting hierarchy.
|
||
|
//
|
||
|
// Polygons may represent any region of the sphere with a polygonal boundary,
|
||
|
// including the entire sphere (known as the "full" polygon). The full polygon
|
||
|
// consists of a single full loop (see Loop), whereas the empty polygon has no
|
||
|
// loops at all.
|
||
|
//
|
||
|
// Use FullPolygon() to construct a full polygon. The zero value of Polygon is
|
||
|
// treated as the empty polygon.
|
||
|
//
|
||
|
// Polygons have the following restrictions:
|
||
|
//
|
||
|
// - Loops may not cross, i.e. the boundary of a loop may not intersect
|
||
|
// both the interior and exterior of any other loop.
|
||
|
//
|
||
|
// - Loops may not share edges, i.e. if a loop contains an edge AB, then
|
||
|
// no other loop may contain AB or BA.
|
||
|
//
|
||
|
// - Loops may share vertices, however no vertex may appear twice in a
|
||
|
// single loop (see Loop).
|
||
|
//
|
||
|
// - No loop may be empty. The full loop may appear only in the full polygon.
|
||
|
type Polygon struct {
|
||
|
loops []*Loop
|
||
|
|
||
|
// loopDepths keeps track of how deep a given loop is in this polygon.
|
||
|
// The depths tracked in this slice are kept in 1:1 lockstep with the
|
||
|
// elements in the loops list.
|
||
|
// Holes inside a polygon are stored as odd numbers, and shells are even.
|
||
|
loopDepths []int
|
||
|
|
||
|
// index is a spatial index of all the polygon loops.
|
||
|
index ShapeIndex
|
||
|
|
||
|
// hasHoles tracks if this polygon has at least one hole.
|
||
|
hasHoles bool
|
||
|
|
||
|
// numVertices keeps the running total of all of the vertices of the contained loops.
|
||
|
numVertices int
|
||
|
|
||
|
// numEdges tracks the total number of edges in all the loops in this polygon.
|
||
|
numEdges int
|
||
|
|
||
|
// bound is a conservative bound on all points contained by this loop.
|
||
|
// If l.ContainsPoint(P), then l.bound.ContainsPoint(P).
|
||
|
bound Rect
|
||
|
|
||
|
// Since bound is not exact, it is possible that a loop A contains
|
||
|
// another loop B whose bounds are slightly larger. subregionBound
|
||
|
// has been expanded sufficiently to account for this error, i.e.
|
||
|
// if A.Contains(B), then A.subregionBound.Contains(B.bound).
|
||
|
subregionBound Rect
|
||
|
|
||
|
// A slice where element i is the cumulative number of edges in the
|
||
|
// preceding loops in the polygon. This field is used for polygons that
|
||
|
// have a large number of loops, and may be empty for polygons with few loops.
|
||
|
cumulativeEdges []int
|
||
|
}
|
||
|
|
||
|
// PolygonFromLoops constructs a polygon from the given hierarchically nested
|
||
|
// loops. The polygon interior consists of the points contained by an odd
|
||
|
// number of loops. (Recall that a loop contains the set of points on its
|
||
|
// left-hand side.)
|
||
|
//
|
||
|
// This method figures out the loop nesting hierarchy and assigns every loop a
|
||
|
// depth. Shells have even depths, and holes have odd depths.
|
||
|
//
|
||
|
// NOTE: this function is NOT YET IMPLEMENTED for more than one loop and will
|
||
|
// panic if given a slice of length > 1.
|
||
|
func PolygonFromLoops(loops []*Loop) *Polygon {
|
||
|
if len(loops) > 1 {
|
||
|
panic("PolygonFromLoops for multiple loops is not yet implemented")
|
||
|
}
|
||
|
|
||
|
p := &Polygon{
|
||
|
loops: loops,
|
||
|
// TODO(roberts): This is explicitly set as depth of 0 for the one loop in
|
||
|
// the polygon. When multiple loops are supported, fix this to set the depths.
|
||
|
loopDepths: []int{0},
|
||
|
numVertices: len(loops[0].Vertices()), // TODO(roberts): Once multi-loop is supported, fix this.
|
||
|
// TODO(roberts): Compute these bounds.
|
||
|
bound: loops[0].RectBound(),
|
||
|
subregionBound: EmptyRect(),
|
||
|
}
|
||
|
|
||
|
const maxLinearSearchLoops = 12 // Based on benchmarks.
|
||
|
if len(loops) > maxLinearSearchLoops {
|
||
|
p.cumulativeEdges = make([]int, 0, len(loops))
|
||
|
}
|
||
|
|
||
|
for _, l := range loops {
|
||
|
if p.cumulativeEdges != nil {
|
||
|
p.cumulativeEdges = append(p.cumulativeEdges, p.numEdges)
|
||
|
}
|
||
|
p.numEdges += len(l.Vertices())
|
||
|
}
|
||
|
|
||
|
return p
|
||
|
}
|
||
|
|
||
|
// FullPolygon returns a special "full" polygon.
|
||
|
func FullPolygon() *Polygon {
|
||
|
return &Polygon{
|
||
|
loops: []*Loop{
|
||
|
FullLoop(),
|
||
|
},
|
||
|
loopDepths: []int{0},
|
||
|
numVertices: len(FullLoop().Vertices()),
|
||
|
bound: FullRect(),
|
||
|
subregionBound: FullRect(),
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// IsEmpty reports whether this is the special "empty" polygon (consisting of no loops).
|
||
|
func (p *Polygon) IsEmpty() bool {
|
||
|
return len(p.loops) == 0
|
||
|
}
|
||
|
|
||
|
// IsFull reports whether this is the special "full" polygon (consisting of a
|
||
|
// single loop that encompasses the entire sphere).
|
||
|
func (p *Polygon) IsFull() bool {
|
||
|
return len(p.loops) == 1 && p.loops[0].IsFull()
|
||
|
}
|
||
|
|
||
|
// NumLoops returns the number of loops in this polygon.
|
||
|
func (p *Polygon) NumLoops() int {
|
||
|
return len(p.loops)
|
||
|
}
|
||
|
|
||
|
// Loops returns the loops in this polygon.
|
||
|
func (p *Polygon) Loops() []*Loop {
|
||
|
return p.loops
|
||
|
}
|
||
|
|
||
|
// Loop returns the loop at the given index. Note that during initialization,
|
||
|
// the given loops are reordered according to a preorder traversal of the loop
|
||
|
// nesting hierarchy. This implies that every loop is immediately followed by
|
||
|
// its descendants. This hierarchy can be traversed using the methods Parent,
|
||
|
// LastDescendant, and Loop.depth.
|
||
|
func (p *Polygon) Loop(k int) *Loop {
|
||
|
return p.loops[k]
|
||
|
}
|
||
|
|
||
|
// Parent returns the index of the parent of loop k.
|
||
|
// If the loop does not have a parent, ok=false is returned.
|
||
|
func (p *Polygon) Parent(k int) (index int, ok bool) {
|
||
|
// See where we are on the depth heirarchy.
|
||
|
depth := p.loopDepths[k]
|
||
|
if depth == 0 {
|
||
|
return -1, false
|
||
|
}
|
||
|
|
||
|
// There may be several loops at the same nesting level as us that share a
|
||
|
// parent loop with us. (Imagine a slice of swiss cheese, of which we are one loop.
|
||
|
// we don't know how many may be next to us before we get back to our parent loop.)
|
||
|
// Move up one position from us, and then begin traversing back through the set of loops
|
||
|
// until we find the one that is our parent or we get to the top of the polygon.
|
||
|
for k--; k >= 0 && p.loopDepths[k] <= depth; k-- {
|
||
|
}
|
||
|
return k, true
|
||
|
}
|
||
|
|
||
|
// LastDescendant returns the index of the last loop that is contained within loop k.
|
||
|
// If k is negative, it returns the last loop in the polygon.
|
||
|
// Note that loops are indexed according to a preorder traversal of the nesting
|
||
|
// hierarchy, so the immediate children of loop k can be found by iterating over
|
||
|
// the loops (k+1)..LastDescendant(k) and selecting those whose depth is equal
|
||
|
// to Loop(k).depth+1.
|
||
|
func (p *Polygon) LastDescendant(k int) int {
|
||
|
if k < 0 {
|
||
|
return len(p.loops) - 1
|
||
|
}
|
||
|
|
||
|
depth := p.loopDepths[k]
|
||
|
|
||
|
// Find the next loop immediately past us in the set of loops, and then start
|
||
|
// moving down the list until we either get to the end or find the next loop
|
||
|
// that is higher up the heirarchy than we are.
|
||
|
for k++; k < len(p.loops) && p.loopDepths[k] > depth; k++ {
|
||
|
}
|
||
|
return k - 1
|
||
|
}
|
||
|
|
||
|
// loopIsHole reports whether the given loop represents a hole in this polygon.
|
||
|
func (p *Polygon) loopIsHole(k int) bool {
|
||
|
return p.loopDepths[k]&1 != 0
|
||
|
}
|
||
|
|
||
|
// loopSign returns -1 if this loop represents a hole in this polygon.
|
||
|
// Otherwise, it returns +1. This is used when computing the area of a polygon.
|
||
|
// (holes are subtracted from the total area).
|
||
|
func (p *Polygon) loopSign(k int) int {
|
||
|
if p.loopIsHole(k) {
|
||
|
return -1
|
||
|
}
|
||
|
return 1
|
||
|
}
|
||
|
|
||
|
// CapBound returns a bounding spherical cap.
|
||
|
func (p *Polygon) CapBound() Cap { return p.bound.CapBound() }
|
||
|
|
||
|
// RectBound returns a bounding latitude-longitude rectangle.
|
||
|
func (p *Polygon) RectBound() Rect { return p.bound }
|
||
|
|
||
|
// ContainsCell reports whether the polygon contains the given cell.
|
||
|
// TODO(roberts)
|
||
|
//func (p *Polygon) ContainsCell(c Cell) bool { ... }
|
||
|
|
||
|
// IntersectsCell reports whether the polygon intersects the given cell.
|
||
|
// TODO(roberts)
|
||
|
//func (p *Polygon) IntersectsCell(c Cell) bool { ... }
|
||
|
|
||
|
// Shape Interface
|
||
|
|
||
|
// NumEdges returns the number of edges in this shape.
|
||
|
func (p *Polygon) NumEdges() int {
|
||
|
return p.numEdges
|
||
|
}
|
||
|
|
||
|
// Edge returns endpoints for the given edge index.
|
||
|
func (p *Polygon) Edge(e int) (a, b Point) {
|
||
|
var i int
|
||
|
|
||
|
if len(p.cumulativeEdges) > 0 {
|
||
|
for i = range p.cumulativeEdges {
|
||
|
if i+1 >= len(p.cumulativeEdges) || e < p.cumulativeEdges[i+1] {
|
||
|
e -= p.cumulativeEdges[i]
|
||
|
break
|
||
|
}
|
||
|
}
|
||
|
} else {
|
||
|
// When the number of loops is small, use linear search. Most often
|
||
|
// there is exactly one loop and the code below executes zero times.
|
||
|
for i = 0; e >= len(p.Loop(i).vertices); i++ {
|
||
|
e -= len(p.Loop(i).vertices)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
// TODO(roberts): C++ uses the oriented vertices from Loop. Move to those when
|
||
|
// they are implmented here.
|
||
|
return p.Loop(i).Vertex(e), p.Loop(i).Vertex(e + 1)
|
||
|
}
|
||
|
|
||
|
// HasInterior reports whether this Polygon has an interior.
|
||
|
func (p *Polygon) HasInterior() bool {
|
||
|
return p.dimension() == polygonGeometry
|
||
|
}
|
||
|
|
||
|
// ContainsOrigin returns whether this shape contains the origin.
|
||
|
func (p *Polygon) ContainsOrigin() bool {
|
||
|
containsOrigin := false
|
||
|
for _, l := range p.loops {
|
||
|
containsOrigin = containsOrigin != l.ContainsOrigin()
|
||
|
}
|
||
|
return containsOrigin
|
||
|
}
|
||
|
|
||
|
// dimension returns the dimension of the geometry represented by this Polygon.
|
||
|
func (p *Polygon) dimension() dimension { return polygonGeometry }
|
||
|
|
||
|
// numChains reports the number of contiguous edge chains in the Polygon.
|
||
|
func (p *Polygon) numChains() int {
|
||
|
if p.IsFull() {
|
||
|
return 0
|
||
|
}
|
||
|
|
||
|
return p.NumLoops()
|
||
|
}
|
||
|
|
||
|
// chainStart returns the id of the first edge in the i-th edge chain in this Polygon.
|
||
|
func (p *Polygon) chainStart(i int) int {
|
||
|
if p.cumulativeEdges != nil {
|
||
|
if i == p.NumLoops() {
|
||
|
return p.numEdges
|
||
|
}
|
||
|
return p.cumulativeEdges[i]
|
||
|
}
|
||
|
|
||
|
e := 0
|
||
|
for i--; i >= 0; i-- {
|
||
|
e += len(p.Loop(i).vertices)
|
||
|
|
||
|
}
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
// TODO(roberts): Differences from C++
|
||
|
// InitNestedFromLoops
|
||
|
// InitFromLoop
|
||
|
// InitOrientedFromLoops
|
||
|
// IsValid
|
||
|
// Area
|
||
|
// Centroid
|
||
|
// SnapLevel
|
||
|
// DistanceToPoint
|
||
|
// DistanceToBoundary
|
||
|
// Project
|
||
|
// ProjectToBoundary
|
||
|
// Contains/ApproxContains/Intersects/ApproxDisjoint for Polygons
|
||
|
// InitTo{Intersection/ApproxIntersection/Union/ApproxUnion/Diff/ApproxDiff}
|
||
|
// InitToSimplified
|
||
|
// InitToSnapped
|
||
|
// IntersectWithPolyline
|
||
|
// ApproxIntersectWithPolyline
|
||
|
// SubtractFromPolyline
|
||
|
// ApproxSubtractFromPolyline
|
||
|
// DestructiveUnion
|
||
|
// DestructiveApproxUnion
|
||
|
// InitToCellUnionBorder
|
||
|
// IsNormalized
|
||
|
// Equals/BoundaryEquals/BoundaryApproxEquals/BoundaryNear Polygons
|
||
|
// BreakEdgesAndAddToBuilder
|
||
|
// clearLoops
|
||
|
// findLoopNestingError
|
||
|
// initLoops
|
||
|
// initToSimplifiedInternal
|
||
|
// internalClipPolyline
|
||
|
// compareBoundary
|
||
|
// containsBoundary
|
||
|
// excludesBoundary
|
||
|
// containsNonCrossingBoundary
|
||
|
// excludesNonCrossingShells
|