1
0
Fork 0
mirror of https://github.com/Luzifer/staticmap.git synced 2025-01-07 21:41:50 +00:00
staticmap/vendor/github.com/golang/geo/s2/regioncoverer.go

434 lines
16 KiB
Go
Raw Normal View History

// Copyright 2015 Google Inc. All rights reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package s2
import (
"container/heap"
)
// RegionCoverer allows arbitrary regions to be approximated as unions of cells (CellUnion).
// This is useful for implementing various sorts of search and precomputation operations.
//
// Typical usage:
//
// rc := &s2.RegionCoverer{MaxLevel: 30, MaxCells: 5}
// r := s2.Region(CapFromCenterArea(center, area))
// covering := rc.Covering(r)
//
// This yields a CellUnion of at most 5 cells that is guaranteed to cover the
// given region (a disc-shaped region on the sphere).
//
// For covering, only cells where (level - MinLevel) is a multiple of LevelMod will be used.
// This effectively allows the branching factor of the S2 CellID hierarchy to be increased.
// Currently the only parameter values allowed are 0/1, 2, or 3, corresponding to
// branching factors of 4, 16, and 64 respectively.
//
// Note the following:
//
// - MinLevel takes priority over MaxCells, i.e. cells below the given level will
// never be used even if this causes a large number of cells to be returned.
//
// - For any setting of MaxCells, up to 6 cells may be returned if that
// is the minimum number of cells required (e.g. if the region intersects
// all six face cells). Up to 3 cells may be returned even for very tiny
// convex regions if they happen to be located at the intersection of
// three cube faces.
//
// - For any setting of MaxCells, an arbitrary number of cells may be
// returned if MinLevel is too high for the region being approximated.
//
// - If MaxCells is less than 4, the area of the covering may be
// arbitrarily large compared to the area of the original region even if
// the region is convex (e.g. a Cap or Rect).
//
// The approximation algorithm is not optimal but does a pretty good job in
// practice. The output does not always use the maximum number of cells
// allowed, both because this would not always yield a better approximation,
// and because MaxCells is a limit on how much work is done exploring the
// possible covering as well as a limit on the final output size.
//
// Because it is an approximation algorithm, one should not rely on the
// stability of the output. In particular, the output of the covering algorithm
// may change across different versions of the library.
//
// One can also generate interior coverings, which are sets of cells which
// are entirely contained within a region. Interior coverings can be
// empty, even for non-empty regions, if there are no cells that satisfy
// the provided constraints and are contained by the region. Note that for
// performance reasons, it is wise to specify a MaxLevel when computing
// interior coverings - otherwise for regions with small or zero area, the
// algorithm may spend a lot of time subdividing cells all the way to leaf
// level to try to find contained cells.
type RegionCoverer struct {
MinLevel int // the minimum cell level to be used.
MaxLevel int // the maximum cell level to be used.
LevelMod int // the LevelMod to be used.
MaxCells int // the maximum desired number of cells in the approximation.
}
type coverer struct {
minLevel int // the minimum cell level to be used.
maxLevel int // the maximum cell level to be used.
levelMod int // the LevelMod to be used.
maxCells int // the maximum desired number of cells in the approximation.
region Region
result CellUnion
pq priorityQueue
interiorCovering bool
}
type candidate struct {
cell Cell
terminal bool // Cell should not be expanded further.
numChildren int // Number of children that intersect the region.
children []*candidate // Actual size may be 0, 4, 16, or 64 elements.
priority int // Priority of the candiate.
}
type priorityQueue []*candidate
func (pq priorityQueue) Len() int {
return len(pq)
}
func (pq priorityQueue) Less(i, j int) bool {
// We want Pop to give us the highest, not lowest, priority so we use greater than here.
return pq[i].priority > pq[j].priority
}
func (pq priorityQueue) Swap(i, j int) {
pq[i], pq[j] = pq[j], pq[i]
}
func (pq *priorityQueue) Push(x interface{}) {
item := x.(*candidate)
*pq = append(*pq, item)
}
func (pq *priorityQueue) Pop() interface{} {
item := (*pq)[len(*pq)-1]
*pq = (*pq)[:len(*pq)-1]
return item
}
func (pq *priorityQueue) Reset() {
*pq = (*pq)[:0]
}
// newCandidate returns a new candidate with no children if the cell intersects the given region.
// The candidate is marked as terminal if it should not be expanded further.
func (c *coverer) newCandidate(cell Cell) *candidate {
if !c.region.IntersectsCell(cell) {
return nil
}
cand := &candidate{cell: cell}
level := int(cell.level)
if level >= c.minLevel {
if c.interiorCovering {
if c.region.ContainsCell(cell) {
cand.terminal = true
} else if level+c.levelMod > c.maxLevel {
return nil
}
} else if level+c.levelMod > c.maxLevel || c.region.ContainsCell(cell) {
cand.terminal = true
}
}
return cand
}
// expandChildren populates the children of the candidate by expanding the given number of
// levels from the given cell. Returns the number of children that were marked "terminal".
func (c *coverer) expandChildren(cand *candidate, cell Cell, numLevels int) int {
numLevels--
var numTerminals int
last := cell.id.ChildEnd()
for ci := cell.id.ChildBegin(); ci != last; ci = ci.Next() {
childCell := CellFromCellID(ci)
if numLevels > 0 {
if c.region.IntersectsCell(childCell) {
numTerminals += c.expandChildren(cand, childCell, numLevels)
}
continue
}
if child := c.newCandidate(childCell); child != nil {
cand.children = append(cand.children, child)
cand.numChildren++
if child.terminal {
numTerminals++
}
}
}
return numTerminals
}
// addCandidate adds the given candidate to the result if it is marked as "terminal",
// otherwise expands its children and inserts it into the priority queue.
// Passing an argument of nil does nothing.
func (c *coverer) addCandidate(cand *candidate) {
if cand == nil {
return
}
if cand.terminal {
c.result = append(c.result, cand.cell.id)
return
}
// Expand one level at a time until we hit minLevel to ensure that we don't skip over it.
numLevels := c.levelMod
level := int(cand.cell.level)
if level < c.minLevel {
numLevels = 1
}
numTerminals := c.expandChildren(cand, cand.cell, numLevels)
maxChildrenShift := uint(2 * c.levelMod)
if cand.numChildren == 0 {
return
} else if !c.interiorCovering && numTerminals == 1<<maxChildrenShift && level >= c.minLevel {
// Optimization: add the parent cell rather than all of its children.
// We can't do this for interior coverings, since the children just
// intersect the region, but may not be contained by it - we need to
// subdivide them further.
cand.terminal = true
c.addCandidate(cand)
} else {
// We negate the priority so that smaller absolute priorities are returned
// first. The heuristic is designed to refine the largest cells first,
// since those are where we have the largest potential gain. Among cells
// of the same size, we prefer the cells with the fewest children.
// Finally, among cells with equal numbers of children we prefer those
// with the smallest number of children that cannot be refined further.
cand.priority = -(((level<<maxChildrenShift)+cand.numChildren)<<maxChildrenShift + numTerminals)
heap.Push(&c.pq, cand)
}
}
// adjustLevel returns the reduced "level" so that it satisfies levelMod. Levels smaller than minLevel
// are not affected (since cells at these levels are eventually expanded).
func (c *coverer) adjustLevel(level int) int {
if c.levelMod > 1 && level > c.minLevel {
level -= (level - c.minLevel) % c.levelMod
}
return level
}
// adjustCellLevels ensures that all cells with level > minLevel also satisfy levelMod,
// by replacing them with an ancestor if necessary. Cell levels smaller
// than minLevel are not modified (see AdjustLevel). The output is
// then normalized to ensure that no redundant cells are present.
func (c *coverer) adjustCellLevels(cells *CellUnion) {
if c.levelMod == 1 {
return
}
var out int
for _, ci := range *cells {
level := ci.Level()
newLevel := c.adjustLevel(level)
if newLevel != level {
ci = ci.Parent(newLevel)
}
if out > 0 && (*cells)[out-1].Contains(ci) {
continue
}
for out > 0 && ci.Contains((*cells)[out-1]) {
out--
}
(*cells)[out] = ci
out++
}
*cells = (*cells)[:out]
}
// initialCandidates computes a set of initial candidates that cover the given region.
func (c *coverer) initialCandidates() {
// Optimization: start with a small (usually 4 cell) covering of the region's bounding cap.
temp := &RegionCoverer{MaxLevel: c.maxLevel, LevelMod: 1, MaxCells: minInt(4, c.maxCells)}
cells := temp.FastCovering(c.region)
c.adjustCellLevels(&cells)
for _, ci := range cells {
c.addCandidate(c.newCandidate(CellFromCellID(ci)))
}
}
// coveringInternal generates a covering and stores it in result.
// Strategy: Start with the 6 faces of the cube. Discard any
// that do not intersect the shape. Then repeatedly choose the
// largest cell that intersects the shape and subdivide it.
//
// result contains the cells that will be part of the output, while pq
// contains cells that we may still subdivide further. Cells that are
// entirely contained within the region are immediately added to the output,
// while cells that do not intersect the region are immediately discarded.
// Therefore pq only contains cells that partially intersect the region.
// Candidates are prioritized first according to cell size (larger cells
// first), then by the number of intersecting children they have (fewest
// children first), and then by the number of fully contained children
// (fewest children first).
func (c *coverer) coveringInternal(region Region) {
c.region = region
c.initialCandidates()
for c.pq.Len() > 0 && (!c.interiorCovering || len(c.result) < c.maxCells) {
cand := heap.Pop(&c.pq).(*candidate)
// For interior covering we keep subdividing no matter how many children
// candidate has. If we reach MaxCells before expanding all children,
// we will just use some of them.
// For exterior covering we cannot do this, because result has to cover the
// whole region, so all children have to be used.
// candidate.numChildren == 1 case takes care of the situation when we
// already have more then MaxCells in result (minLevel is too high).
// Subdividing of the candidate with one child does no harm in this case.
if c.interiorCovering || int(cand.cell.level) < c.minLevel || cand.numChildren == 1 || len(c.result)+c.pq.Len()+cand.numChildren <= c.maxCells {
for _, child := range cand.children {
if !c.interiorCovering || len(c.result) < c.maxCells {
c.addCandidate(child)
}
}
} else {
cand.terminal = true
c.addCandidate(cand)
}
}
c.pq.Reset()
c.region = nil
}
// newCoverer returns an instance of coverer.
func (rc *RegionCoverer) newCoverer() *coverer {
return &coverer{
minLevel: maxInt(0, minInt(maxLevel, rc.MinLevel)),
maxLevel: maxInt(0, minInt(maxLevel, rc.MaxLevel)),
levelMod: maxInt(1, minInt(3, rc.LevelMod)),
maxCells: rc.MaxCells,
}
}
// Covering returns a CellUnion that covers the given region and satisfies the various restrictions.
func (rc *RegionCoverer) Covering(region Region) CellUnion {
covering := rc.CellUnion(region)
covering.Denormalize(maxInt(0, minInt(maxLevel, rc.MinLevel)), maxInt(1, minInt(3, rc.LevelMod)))
return covering
}
// InteriorCovering returns a CellUnion that is contained within the given region and satisfies the various restrictions.
func (rc *RegionCoverer) InteriorCovering(region Region) CellUnion {
intCovering := rc.InteriorCellUnion(region)
intCovering.Denormalize(maxInt(0, minInt(maxLevel, rc.MinLevel)), maxInt(1, minInt(3, rc.LevelMod)))
return intCovering
}
// CellUnion returns a normalized CellUnion that covers the given region and
// satisfies the restrictions except for minLevel and levelMod. These criteria
// cannot be satisfied using a cell union because cell unions are
// automatically normalized by replacing four child cells with their parent
// whenever possible. (Note that the list of cell ids passed to the CellUnion
// constructor does in fact satisfy all the given restrictions.)
func (rc *RegionCoverer) CellUnion(region Region) CellUnion {
c := rc.newCoverer()
c.coveringInternal(region)
cu := c.result
cu.Normalize()
return cu
}
// InteriorCellUnion returns a normalized CellUnion that is contained within the given region and
// satisfies the restrictions except for minLevel and levelMod. These criteria
// cannot be satisfied using a cell union because cell unions are
// automatically normalized by replacing four child cells with their parent
// whenever possible. (Note that the list of cell ids passed to the CellUnion
// constructor does in fact satisfy all the given restrictions.)
func (rc *RegionCoverer) InteriorCellUnion(region Region) CellUnion {
c := rc.newCoverer()
c.interiorCovering = true
c.coveringInternal(region)
cu := c.result
cu.Normalize()
return cu
}
// FastCovering returns a CellUnion that covers the given region similar to Covering,
// except that this method is much faster and the coverings are not as tight.
// All of the usual parameters are respected (MaxCells, MinLevel, MaxLevel, and LevelMod),
// except that the implementation makes no attempt to take advantage of large values of
// MaxCells. (A small number of cells will always be returned.)
//
// This function is useful as a starting point for algorithms that
// recursively subdivide cells.
func (rc *RegionCoverer) FastCovering(region Region) CellUnion {
c := rc.newCoverer()
cu := CellUnion(region.CellUnionBound())
c.normalizeCovering(&cu)
return cu
}
// normalizeCovering normalizes the "covering" so that it conforms to the current covering
// parameters (MaxCells, minLevel, maxLevel, and levelMod).
// This method makes no attempt to be optimal. In particular, if
// minLevel > 0 or levelMod > 1 then it may return more than the
// desired number of cells even when this isn't necessary.
//
// Note that when the covering parameters have their default values, almost
// all of the code in this function is skipped.
func (c *coverer) normalizeCovering(covering *CellUnion) {
// If any cells are too small, or don't satisfy levelMod, then replace them with ancestors.
if c.maxLevel < maxLevel || c.levelMod > 1 {
for i, ci := range *covering {
level := ci.Level()
newLevel := c.adjustLevel(minInt(level, c.maxLevel))
if newLevel != level {
(*covering)[i] = ci.Parent(newLevel)
}
}
}
// Sort the cells and simplify them.
covering.Normalize()
// If there are still too many cells, then repeatedly replace two adjacent
// cells in CellID order by their lowest common ancestor.
for len(*covering) > c.maxCells {
bestIndex := -1
bestLevel := -1
for i := 0; i+1 < len(*covering); i++ {
level, ok := (*covering)[i].CommonAncestorLevel((*covering)[i+1])
if !ok {
continue
}
level = c.adjustLevel(level)
if level > bestLevel {
bestLevel = level
bestIndex = i
}
}
if bestLevel < c.minLevel {
break
}
(*covering)[bestIndex] = (*covering)[bestIndex].Parent(bestLevel)
covering.Normalize()
}
// Make sure that the covering satisfies minLevel and levelMod,
// possibly at the expense of satisfying MaxCells.
if c.minLevel > 0 || c.levelMod > 1 {
covering.Denormalize(c.minLevel, c.levelMod)
}
}
// BUG(akashagrawal): The differences from the C++ version FloodFill, SimpleCovering