mirror of
https://github.com/Luzifer/share.git
synced 2024-12-21 11:01:17 +00:00
629 lines
17 KiB
Go
629 lines
17 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package ssh
|
|
|
|
import (
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/des"
|
|
"crypto/rc4"
|
|
"crypto/subtle"
|
|
"encoding/binary"
|
|
"errors"
|
|
"fmt"
|
|
"hash"
|
|
"io"
|
|
"io/ioutil"
|
|
)
|
|
|
|
const (
|
|
packetSizeMultiple = 16 // TODO(huin) this should be determined by the cipher.
|
|
|
|
// RFC 4253 section 6.1 defines a minimum packet size of 32768 that implementations
|
|
// MUST be able to process (plus a few more kilobytes for padding and mac). The RFC
|
|
// indicates implementations SHOULD be able to handle larger packet sizes, but then
|
|
// waffles on about reasonable limits.
|
|
//
|
|
// OpenSSH caps their maxPacket at 256kB so we choose to do
|
|
// the same. maxPacket is also used to ensure that uint32
|
|
// length fields do not overflow, so it should remain well
|
|
// below 4G.
|
|
maxPacket = 256 * 1024
|
|
)
|
|
|
|
// noneCipher implements cipher.Stream and provides no encryption. It is used
|
|
// by the transport before the first key-exchange.
|
|
type noneCipher struct{}
|
|
|
|
func (c noneCipher) XORKeyStream(dst, src []byte) {
|
|
copy(dst, src)
|
|
}
|
|
|
|
func newAESCTR(key, iv []byte) (cipher.Stream, error) {
|
|
c, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
return cipher.NewCTR(c, iv), nil
|
|
}
|
|
|
|
func newRC4(key, iv []byte) (cipher.Stream, error) {
|
|
return rc4.NewCipher(key)
|
|
}
|
|
|
|
type streamCipherMode struct {
|
|
keySize int
|
|
ivSize int
|
|
skip int
|
|
createFunc func(key, iv []byte) (cipher.Stream, error)
|
|
}
|
|
|
|
func (c *streamCipherMode) createStream(key, iv []byte) (cipher.Stream, error) {
|
|
if len(key) < c.keySize {
|
|
panic("ssh: key length too small for cipher")
|
|
}
|
|
if len(iv) < c.ivSize {
|
|
panic("ssh: iv too small for cipher")
|
|
}
|
|
|
|
stream, err := c.createFunc(key[:c.keySize], iv[:c.ivSize])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var streamDump []byte
|
|
if c.skip > 0 {
|
|
streamDump = make([]byte, 512)
|
|
}
|
|
|
|
for remainingToDump := c.skip; remainingToDump > 0; {
|
|
dumpThisTime := remainingToDump
|
|
if dumpThisTime > len(streamDump) {
|
|
dumpThisTime = len(streamDump)
|
|
}
|
|
stream.XORKeyStream(streamDump[:dumpThisTime], streamDump[:dumpThisTime])
|
|
remainingToDump -= dumpThisTime
|
|
}
|
|
|
|
return stream, nil
|
|
}
|
|
|
|
// cipherModes documents properties of supported ciphers. Ciphers not included
|
|
// are not supported and will not be negotiated, even if explicitly requested in
|
|
// ClientConfig.Crypto.Ciphers.
|
|
var cipherModes = map[string]*streamCipherMode{
|
|
// Ciphers from RFC4344, which introduced many CTR-based ciphers. Algorithms
|
|
// are defined in the order specified in the RFC.
|
|
"aes128-ctr": {16, aes.BlockSize, 0, newAESCTR},
|
|
"aes192-ctr": {24, aes.BlockSize, 0, newAESCTR},
|
|
"aes256-ctr": {32, aes.BlockSize, 0, newAESCTR},
|
|
|
|
// Ciphers from RFC4345, which introduces security-improved arcfour ciphers.
|
|
// They are defined in the order specified in the RFC.
|
|
"arcfour128": {16, 0, 1536, newRC4},
|
|
"arcfour256": {32, 0, 1536, newRC4},
|
|
|
|
// Cipher defined in RFC 4253, which describes SSH Transport Layer Protocol.
|
|
// Note that this cipher is not safe, as stated in RFC 4253: "Arcfour (and
|
|
// RC4) has problems with weak keys, and should be used with caution."
|
|
// RFC4345 introduces improved versions of Arcfour.
|
|
"arcfour": {16, 0, 0, newRC4},
|
|
|
|
// AES-GCM is not a stream cipher, so it is constructed with a
|
|
// special case. If we add any more non-stream ciphers, we
|
|
// should invest a cleaner way to do this.
|
|
gcmCipherID: {16, 12, 0, nil},
|
|
|
|
// CBC mode is insecure and so is not included in the default config.
|
|
// (See http://www.isg.rhul.ac.uk/~kp/SandPfinal.pdf). If absolutely
|
|
// needed, it's possible to specify a custom Config to enable it.
|
|
// You should expect that an active attacker can recover plaintext if
|
|
// you do.
|
|
aes128cbcID: {16, aes.BlockSize, 0, nil},
|
|
|
|
// 3des-cbc is insecure and is disabled by default.
|
|
tripledescbcID: {24, des.BlockSize, 0, nil},
|
|
}
|
|
|
|
// prefixLen is the length of the packet prefix that contains the packet length
|
|
// and number of padding bytes.
|
|
const prefixLen = 5
|
|
|
|
// streamPacketCipher is a packetCipher using a stream cipher.
|
|
type streamPacketCipher struct {
|
|
mac hash.Hash
|
|
cipher cipher.Stream
|
|
etm bool
|
|
|
|
// The following members are to avoid per-packet allocations.
|
|
prefix [prefixLen]byte
|
|
seqNumBytes [4]byte
|
|
padding [2 * packetSizeMultiple]byte
|
|
packetData []byte
|
|
macResult []byte
|
|
}
|
|
|
|
// readPacket reads and decrypt a single packet from the reader argument.
|
|
func (s *streamPacketCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
if _, err := io.ReadFull(r, s.prefix[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
var encryptedPaddingLength [1]byte
|
|
if s.mac != nil && s.etm {
|
|
copy(encryptedPaddingLength[:], s.prefix[4:5])
|
|
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
|
|
} else {
|
|
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
|
|
}
|
|
|
|
length := binary.BigEndian.Uint32(s.prefix[0:4])
|
|
paddingLength := uint32(s.prefix[4])
|
|
|
|
var macSize uint32
|
|
if s.mac != nil {
|
|
s.mac.Reset()
|
|
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
|
|
s.mac.Write(s.seqNumBytes[:])
|
|
if s.etm {
|
|
s.mac.Write(s.prefix[:4])
|
|
s.mac.Write(encryptedPaddingLength[:])
|
|
} else {
|
|
s.mac.Write(s.prefix[:])
|
|
}
|
|
macSize = uint32(s.mac.Size())
|
|
}
|
|
|
|
if length <= paddingLength+1 {
|
|
return nil, errors.New("ssh: invalid packet length, packet too small")
|
|
}
|
|
|
|
if length > maxPacket {
|
|
return nil, errors.New("ssh: invalid packet length, packet too large")
|
|
}
|
|
|
|
// the maxPacket check above ensures that length-1+macSize
|
|
// does not overflow.
|
|
if uint32(cap(s.packetData)) < length-1+macSize {
|
|
s.packetData = make([]byte, length-1+macSize)
|
|
} else {
|
|
s.packetData = s.packetData[:length-1+macSize]
|
|
}
|
|
|
|
if _, err := io.ReadFull(r, s.packetData); err != nil {
|
|
return nil, err
|
|
}
|
|
mac := s.packetData[length-1:]
|
|
data := s.packetData[:length-1]
|
|
|
|
if s.mac != nil && s.etm {
|
|
s.mac.Write(data)
|
|
}
|
|
|
|
s.cipher.XORKeyStream(data, data)
|
|
|
|
if s.mac != nil {
|
|
if !s.etm {
|
|
s.mac.Write(data)
|
|
}
|
|
s.macResult = s.mac.Sum(s.macResult[:0])
|
|
if subtle.ConstantTimeCompare(s.macResult, mac) != 1 {
|
|
return nil, errors.New("ssh: MAC failure")
|
|
}
|
|
}
|
|
|
|
return s.packetData[:length-paddingLength-1], nil
|
|
}
|
|
|
|
// writePacket encrypts and sends a packet of data to the writer argument
|
|
func (s *streamPacketCipher) writePacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
|
|
if len(packet) > maxPacket {
|
|
return errors.New("ssh: packet too large")
|
|
}
|
|
|
|
aadlen := 0
|
|
if s.mac != nil && s.etm {
|
|
// packet length is not encrypted for EtM modes
|
|
aadlen = 4
|
|
}
|
|
|
|
paddingLength := packetSizeMultiple - (prefixLen+len(packet)-aadlen)%packetSizeMultiple
|
|
if paddingLength < 4 {
|
|
paddingLength += packetSizeMultiple
|
|
}
|
|
|
|
length := len(packet) + 1 + paddingLength
|
|
binary.BigEndian.PutUint32(s.prefix[:], uint32(length))
|
|
s.prefix[4] = byte(paddingLength)
|
|
padding := s.padding[:paddingLength]
|
|
if _, err := io.ReadFull(rand, padding); err != nil {
|
|
return err
|
|
}
|
|
|
|
if s.mac != nil {
|
|
s.mac.Reset()
|
|
binary.BigEndian.PutUint32(s.seqNumBytes[:], seqNum)
|
|
s.mac.Write(s.seqNumBytes[:])
|
|
|
|
if s.etm {
|
|
// For EtM algorithms, the packet length must stay unencrypted,
|
|
// but the following data (padding length) must be encrypted
|
|
s.cipher.XORKeyStream(s.prefix[4:5], s.prefix[4:5])
|
|
}
|
|
|
|
s.mac.Write(s.prefix[:])
|
|
|
|
if !s.etm {
|
|
// For non-EtM algorithms, the algorithm is applied on unencrypted data
|
|
s.mac.Write(packet)
|
|
s.mac.Write(padding)
|
|
}
|
|
}
|
|
|
|
if !(s.mac != nil && s.etm) {
|
|
// For EtM algorithms, the padding length has already been encrypted
|
|
// and the packet length must remain unencrypted
|
|
s.cipher.XORKeyStream(s.prefix[:], s.prefix[:])
|
|
}
|
|
|
|
s.cipher.XORKeyStream(packet, packet)
|
|
s.cipher.XORKeyStream(padding, padding)
|
|
|
|
if s.mac != nil && s.etm {
|
|
// For EtM algorithms, packet and padding must be encrypted
|
|
s.mac.Write(packet)
|
|
s.mac.Write(padding)
|
|
}
|
|
|
|
if _, err := w.Write(s.prefix[:]); err != nil {
|
|
return err
|
|
}
|
|
if _, err := w.Write(packet); err != nil {
|
|
return err
|
|
}
|
|
if _, err := w.Write(padding); err != nil {
|
|
return err
|
|
}
|
|
|
|
if s.mac != nil {
|
|
s.macResult = s.mac.Sum(s.macResult[:0])
|
|
if _, err := w.Write(s.macResult); err != nil {
|
|
return err
|
|
}
|
|
}
|
|
|
|
return nil
|
|
}
|
|
|
|
type gcmCipher struct {
|
|
aead cipher.AEAD
|
|
prefix [4]byte
|
|
iv []byte
|
|
buf []byte
|
|
}
|
|
|
|
func newGCMCipher(iv, key []byte) (packetCipher, error) {
|
|
c, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
aead, err := cipher.NewGCM(c)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return &gcmCipher{
|
|
aead: aead,
|
|
iv: iv,
|
|
}, nil
|
|
}
|
|
|
|
const gcmTagSize = 16
|
|
|
|
func (c *gcmCipher) writePacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
|
|
// Pad out to multiple of 16 bytes. This is different from the
|
|
// stream cipher because that encrypts the length too.
|
|
padding := byte(packetSizeMultiple - (1+len(packet))%packetSizeMultiple)
|
|
if padding < 4 {
|
|
padding += packetSizeMultiple
|
|
}
|
|
|
|
length := uint32(len(packet) + int(padding) + 1)
|
|
binary.BigEndian.PutUint32(c.prefix[:], length)
|
|
if _, err := w.Write(c.prefix[:]); err != nil {
|
|
return err
|
|
}
|
|
|
|
if cap(c.buf) < int(length) {
|
|
c.buf = make([]byte, length)
|
|
} else {
|
|
c.buf = c.buf[:length]
|
|
}
|
|
|
|
c.buf[0] = padding
|
|
copy(c.buf[1:], packet)
|
|
if _, err := io.ReadFull(rand, c.buf[1+len(packet):]); err != nil {
|
|
return err
|
|
}
|
|
c.buf = c.aead.Seal(c.buf[:0], c.iv, c.buf, c.prefix[:])
|
|
if _, err := w.Write(c.buf); err != nil {
|
|
return err
|
|
}
|
|
c.incIV()
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c *gcmCipher) incIV() {
|
|
for i := 4 + 7; i >= 4; i-- {
|
|
c.iv[i]++
|
|
if c.iv[i] != 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
func (c *gcmCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
if _, err := io.ReadFull(r, c.prefix[:]); err != nil {
|
|
return nil, err
|
|
}
|
|
length := binary.BigEndian.Uint32(c.prefix[:])
|
|
if length > maxPacket {
|
|
return nil, errors.New("ssh: max packet length exceeded")
|
|
}
|
|
|
|
if cap(c.buf) < int(length+gcmTagSize) {
|
|
c.buf = make([]byte, length+gcmTagSize)
|
|
} else {
|
|
c.buf = c.buf[:length+gcmTagSize]
|
|
}
|
|
|
|
if _, err := io.ReadFull(r, c.buf); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
plain, err := c.aead.Open(c.buf[:0], c.iv, c.buf, c.prefix[:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c.incIV()
|
|
|
|
padding := plain[0]
|
|
if padding < 4 {
|
|
// padding is a byte, so it automatically satisfies
|
|
// the maximum size, which is 255.
|
|
return nil, fmt.Errorf("ssh: illegal padding %d", padding)
|
|
}
|
|
|
|
if int(padding+1) >= len(plain) {
|
|
return nil, fmt.Errorf("ssh: padding %d too large", padding)
|
|
}
|
|
plain = plain[1 : length-uint32(padding)]
|
|
return plain, nil
|
|
}
|
|
|
|
// cbcCipher implements aes128-cbc cipher defined in RFC 4253 section 6.1
|
|
type cbcCipher struct {
|
|
mac hash.Hash
|
|
macSize uint32
|
|
decrypter cipher.BlockMode
|
|
encrypter cipher.BlockMode
|
|
|
|
// The following members are to avoid per-packet allocations.
|
|
seqNumBytes [4]byte
|
|
packetData []byte
|
|
macResult []byte
|
|
|
|
// Amount of data we should still read to hide which
|
|
// verification error triggered.
|
|
oracleCamouflage uint32
|
|
}
|
|
|
|
func newCBCCipher(c cipher.Block, iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
cbc := &cbcCipher{
|
|
mac: macModes[algs.MAC].new(macKey),
|
|
decrypter: cipher.NewCBCDecrypter(c, iv),
|
|
encrypter: cipher.NewCBCEncrypter(c, iv),
|
|
packetData: make([]byte, 1024),
|
|
}
|
|
if cbc.mac != nil {
|
|
cbc.macSize = uint32(cbc.mac.Size())
|
|
}
|
|
|
|
return cbc, nil
|
|
}
|
|
|
|
func newAESCBCCipher(iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
c, err := aes.NewCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
cbc, err := newCBCCipher(c, iv, key, macKey, algs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return cbc, nil
|
|
}
|
|
|
|
func newTripleDESCBCCipher(iv, key, macKey []byte, algs directionAlgorithms) (packetCipher, error) {
|
|
c, err := des.NewTripleDESCipher(key)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
cbc, err := newCBCCipher(c, iv, key, macKey, algs)
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
return cbc, nil
|
|
}
|
|
|
|
func maxUInt32(a, b int) uint32 {
|
|
if a > b {
|
|
return uint32(a)
|
|
}
|
|
return uint32(b)
|
|
}
|
|
|
|
const (
|
|
cbcMinPacketSizeMultiple = 8
|
|
cbcMinPacketSize = 16
|
|
cbcMinPaddingSize = 4
|
|
)
|
|
|
|
// cbcError represents a verification error that may leak information.
|
|
type cbcError string
|
|
|
|
func (e cbcError) Error() string { return string(e) }
|
|
|
|
func (c *cbcCipher) readPacket(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
p, err := c.readPacketLeaky(seqNum, r)
|
|
if err != nil {
|
|
if _, ok := err.(cbcError); ok {
|
|
// Verification error: read a fixed amount of
|
|
// data, to make distinguishing between
|
|
// failing MAC and failing length check more
|
|
// difficult.
|
|
io.CopyN(ioutil.Discard, r, int64(c.oracleCamouflage))
|
|
}
|
|
}
|
|
return p, err
|
|
}
|
|
|
|
func (c *cbcCipher) readPacketLeaky(seqNum uint32, r io.Reader) ([]byte, error) {
|
|
blockSize := c.decrypter.BlockSize()
|
|
|
|
// Read the header, which will include some of the subsequent data in the
|
|
// case of block ciphers - this is copied back to the payload later.
|
|
// How many bytes of payload/padding will be read with this first read.
|
|
firstBlockLength := uint32((prefixLen + blockSize - 1) / blockSize * blockSize)
|
|
firstBlock := c.packetData[:firstBlockLength]
|
|
if _, err := io.ReadFull(r, firstBlock); err != nil {
|
|
return nil, err
|
|
}
|
|
|
|
c.oracleCamouflage = maxPacket + 4 + c.macSize - firstBlockLength
|
|
|
|
c.decrypter.CryptBlocks(firstBlock, firstBlock)
|
|
length := binary.BigEndian.Uint32(firstBlock[:4])
|
|
if length > maxPacket {
|
|
return nil, cbcError("ssh: packet too large")
|
|
}
|
|
if length+4 < maxUInt32(cbcMinPacketSize, blockSize) {
|
|
// The minimum size of a packet is 16 (or the cipher block size, whichever
|
|
// is larger) bytes.
|
|
return nil, cbcError("ssh: packet too small")
|
|
}
|
|
// The length of the packet (including the length field but not the MAC) must
|
|
// be a multiple of the block size or 8, whichever is larger.
|
|
if (length+4)%maxUInt32(cbcMinPacketSizeMultiple, blockSize) != 0 {
|
|
return nil, cbcError("ssh: invalid packet length multiple")
|
|
}
|
|
|
|
paddingLength := uint32(firstBlock[4])
|
|
if paddingLength < cbcMinPaddingSize || length <= paddingLength+1 {
|
|
return nil, cbcError("ssh: invalid packet length")
|
|
}
|
|
|
|
// Positions within the c.packetData buffer:
|
|
macStart := 4 + length
|
|
paddingStart := macStart - paddingLength
|
|
|
|
// Entire packet size, starting before length, ending at end of mac.
|
|
entirePacketSize := macStart + c.macSize
|
|
|
|
// Ensure c.packetData is large enough for the entire packet data.
|
|
if uint32(cap(c.packetData)) < entirePacketSize {
|
|
// Still need to upsize and copy, but this should be rare at runtime, only
|
|
// on upsizing the packetData buffer.
|
|
c.packetData = make([]byte, entirePacketSize)
|
|
copy(c.packetData, firstBlock)
|
|
} else {
|
|
c.packetData = c.packetData[:entirePacketSize]
|
|
}
|
|
|
|
n, err := io.ReadFull(r, c.packetData[firstBlockLength:])
|
|
if err != nil {
|
|
return nil, err
|
|
}
|
|
c.oracleCamouflage -= uint32(n)
|
|
|
|
remainingCrypted := c.packetData[firstBlockLength:macStart]
|
|
c.decrypter.CryptBlocks(remainingCrypted, remainingCrypted)
|
|
|
|
mac := c.packetData[macStart:]
|
|
if c.mac != nil {
|
|
c.mac.Reset()
|
|
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
|
|
c.mac.Write(c.seqNumBytes[:])
|
|
c.mac.Write(c.packetData[:macStart])
|
|
c.macResult = c.mac.Sum(c.macResult[:0])
|
|
if subtle.ConstantTimeCompare(c.macResult, mac) != 1 {
|
|
return nil, cbcError("ssh: MAC failure")
|
|
}
|
|
}
|
|
|
|
return c.packetData[prefixLen:paddingStart], nil
|
|
}
|
|
|
|
func (c *cbcCipher) writePacket(seqNum uint32, w io.Writer, rand io.Reader, packet []byte) error {
|
|
effectiveBlockSize := maxUInt32(cbcMinPacketSizeMultiple, c.encrypter.BlockSize())
|
|
|
|
// Length of encrypted portion of the packet (header, payload, padding).
|
|
// Enforce minimum padding and packet size.
|
|
encLength := maxUInt32(prefixLen+len(packet)+cbcMinPaddingSize, cbcMinPaddingSize)
|
|
// Enforce block size.
|
|
encLength = (encLength + effectiveBlockSize - 1) / effectiveBlockSize * effectiveBlockSize
|
|
|
|
length := encLength - 4
|
|
paddingLength := int(length) - (1 + len(packet))
|
|
|
|
// Overall buffer contains: header, payload, padding, mac.
|
|
// Space for the MAC is reserved in the capacity but not the slice length.
|
|
bufferSize := encLength + c.macSize
|
|
if uint32(cap(c.packetData)) < bufferSize {
|
|
c.packetData = make([]byte, encLength, bufferSize)
|
|
} else {
|
|
c.packetData = c.packetData[:encLength]
|
|
}
|
|
|
|
p := c.packetData
|
|
|
|
// Packet header.
|
|
binary.BigEndian.PutUint32(p, length)
|
|
p = p[4:]
|
|
p[0] = byte(paddingLength)
|
|
|
|
// Payload.
|
|
p = p[1:]
|
|
copy(p, packet)
|
|
|
|
// Padding.
|
|
p = p[len(packet):]
|
|
if _, err := io.ReadFull(rand, p); err != nil {
|
|
return err
|
|
}
|
|
|
|
if c.mac != nil {
|
|
c.mac.Reset()
|
|
binary.BigEndian.PutUint32(c.seqNumBytes[:], seqNum)
|
|
c.mac.Write(c.seqNumBytes[:])
|
|
c.mac.Write(c.packetData)
|
|
// The MAC is now appended into the capacity reserved for it earlier.
|
|
c.packetData = c.mac.Sum(c.packetData)
|
|
}
|
|
|
|
c.encrypter.CryptBlocks(c.packetData[:encLength], c.packetData[:encLength])
|
|
|
|
if _, err := w.Write(c.packetData); err != nil {
|
|
return err
|
|
}
|
|
|
|
return nil
|
|
}
|