mirror of
https://github.com/Luzifer/share.git
synced 2025-01-02 08:51:18 +00:00
1415 lines
35 KiB
Go
1415 lines
35 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package otr implements the Off The Record protocol as specified in
|
|
// http://www.cypherpunks.ca/otr/Protocol-v2-3.1.0.html
|
|
package otr // import "golang.org/x/crypto/otr"
|
|
|
|
import (
|
|
"bytes"
|
|
"crypto/aes"
|
|
"crypto/cipher"
|
|
"crypto/dsa"
|
|
"crypto/hmac"
|
|
"crypto/rand"
|
|
"crypto/sha1"
|
|
"crypto/sha256"
|
|
"crypto/subtle"
|
|
"encoding/base64"
|
|
"encoding/hex"
|
|
"errors"
|
|
"hash"
|
|
"io"
|
|
"math/big"
|
|
"strconv"
|
|
)
|
|
|
|
// SecurityChange describes a change in the security state of a Conversation.
|
|
type SecurityChange int
|
|
|
|
const (
|
|
NoChange SecurityChange = iota
|
|
// NewKeys indicates that a key exchange has completed. This occurs
|
|
// when a conversation first becomes encrypted, and when the keys are
|
|
// renegotiated within an encrypted conversation.
|
|
NewKeys
|
|
// SMPSecretNeeded indicates that the peer has started an
|
|
// authentication and that we need to supply a secret. Call SMPQuestion
|
|
// to get the optional, human readable challenge and then Authenticate
|
|
// to supply the matching secret.
|
|
SMPSecretNeeded
|
|
// SMPComplete indicates that an authentication completed. The identity
|
|
// of the peer has now been confirmed.
|
|
SMPComplete
|
|
// SMPFailed indicates that an authentication failed.
|
|
SMPFailed
|
|
// ConversationEnded indicates that the peer ended the secure
|
|
// conversation.
|
|
ConversationEnded
|
|
)
|
|
|
|
// QueryMessage can be sent to a peer to start an OTR conversation.
|
|
var QueryMessage = "?OTRv2?"
|
|
|
|
// ErrorPrefix can be used to make an OTR error by appending an error message
|
|
// to it.
|
|
var ErrorPrefix = "?OTR Error:"
|
|
|
|
var (
|
|
fragmentPartSeparator = []byte(",")
|
|
fragmentPrefix = []byte("?OTR,")
|
|
msgPrefix = []byte("?OTR:")
|
|
queryMarker = []byte("?OTR")
|
|
)
|
|
|
|
// isQuery attempts to parse an OTR query from msg and returns the greatest
|
|
// common version, or 0 if msg is not an OTR query.
|
|
func isQuery(msg []byte) (greatestCommonVersion int) {
|
|
pos := bytes.Index(msg, queryMarker)
|
|
if pos == -1 {
|
|
return 0
|
|
}
|
|
for i, c := range msg[pos+len(queryMarker):] {
|
|
if i == 0 {
|
|
if c == '?' {
|
|
// Indicates support for version 1, but we don't
|
|
// implement that.
|
|
continue
|
|
}
|
|
|
|
if c != 'v' {
|
|
// Invalid message
|
|
return 0
|
|
}
|
|
|
|
continue
|
|
}
|
|
|
|
if c == '?' {
|
|
// End of message
|
|
return
|
|
}
|
|
|
|
if c == ' ' || c == '\t' {
|
|
// Probably an invalid message
|
|
return 0
|
|
}
|
|
|
|
if c == '2' {
|
|
greatestCommonVersion = 2
|
|
}
|
|
}
|
|
|
|
return 0
|
|
}
|
|
|
|
const (
|
|
statePlaintext = iota
|
|
stateEncrypted
|
|
stateFinished
|
|
)
|
|
|
|
const (
|
|
authStateNone = iota
|
|
authStateAwaitingDHKey
|
|
authStateAwaitingRevealSig
|
|
authStateAwaitingSig
|
|
)
|
|
|
|
const (
|
|
msgTypeDHCommit = 2
|
|
msgTypeData = 3
|
|
msgTypeDHKey = 10
|
|
msgTypeRevealSig = 17
|
|
msgTypeSig = 18
|
|
)
|
|
|
|
const (
|
|
// If the requested fragment size is less than this, it will be ignored.
|
|
minFragmentSize = 18
|
|
// Messages are padded to a multiple of this number of bytes.
|
|
paddingGranularity = 256
|
|
// The number of bytes in a Diffie-Hellman private value (320-bits).
|
|
dhPrivateBytes = 40
|
|
// The number of bytes needed to represent an element of the DSA
|
|
// subgroup (160-bits).
|
|
dsaSubgroupBytes = 20
|
|
// The number of bytes of the MAC that are sent on the wire (160-bits).
|
|
macPrefixBytes = 20
|
|
)
|
|
|
|
// These are the global, common group parameters for OTR.
|
|
var (
|
|
p *big.Int // group prime
|
|
g *big.Int // group generator
|
|
q *big.Int // group order
|
|
pMinus2 *big.Int
|
|
)
|
|
|
|
func init() {
|
|
p, _ = new(big.Int).SetString("FFFFFFFFFFFFFFFFC90FDAA22168C234C4C6628B80DC1CD129024E088A67CC74020BBEA63B139B22514A08798E3404DDEF9519B3CD3A431B302B0A6DF25F14374FE1356D6D51C245E485B576625E7EC6F44C42E9A637ED6B0BFF5CB6F406B7EDEE386BFB5A899FA5AE9F24117C4B1FE649286651ECE45B3DC2007CB8A163BF0598DA48361C55D39A69163FA8FD24CF5F83655D23DCA3AD961C62F356208552BB9ED529077096966D670C354E4ABC9804F1746C08CA237327FFFFFFFFFFFFFFFF", 16)
|
|
q, _ = new(big.Int).SetString("7FFFFFFFFFFFFFFFE487ED5110B4611A62633145C06E0E68948127044533E63A0105DF531D89CD9128A5043CC71A026EF7CA8CD9E69D218D98158536F92F8A1BA7F09AB6B6A8E122F242DABB312F3F637A262174D31BF6B585FFAE5B7A035BF6F71C35FDAD44CFD2D74F9208BE258FF324943328F6722D9EE1003E5C50B1DF82CC6D241B0E2AE9CD348B1FD47E9267AFC1B2AE91EE51D6CB0E3179AB1042A95DCF6A9483B84B4B36B3861AA7255E4C0278BA36046511B993FFFFFFFFFFFFFFFF", 16)
|
|
g = new(big.Int).SetInt64(2)
|
|
pMinus2 = new(big.Int).Sub(p, g)
|
|
}
|
|
|
|
// Conversation represents a relation with a peer. The zero value is a valid
|
|
// Conversation, although PrivateKey must be set.
|
|
//
|
|
// When communicating with a peer, all inbound messages should be passed to
|
|
// Conversation.Receive and all outbound messages to Conversation.Send. The
|
|
// Conversation will take care of maintaining the encryption state and
|
|
// negotiating encryption as needed.
|
|
type Conversation struct {
|
|
// PrivateKey contains the private key to use to sign key exchanges.
|
|
PrivateKey *PrivateKey
|
|
|
|
// Rand can be set to override the entropy source. Otherwise,
|
|
// crypto/rand will be used.
|
|
Rand io.Reader
|
|
// If FragmentSize is set, all messages produced by Receive and Send
|
|
// will be fragmented into messages of, at most, this number of bytes.
|
|
FragmentSize int
|
|
|
|
// Once Receive has returned NewKeys once, the following fields are
|
|
// valid.
|
|
SSID [8]byte
|
|
TheirPublicKey PublicKey
|
|
|
|
state, authState int
|
|
|
|
r [16]byte
|
|
x, y *big.Int
|
|
gx, gy *big.Int
|
|
gxBytes []byte
|
|
digest [sha256.Size]byte
|
|
|
|
revealKeys, sigKeys akeKeys
|
|
|
|
myKeyId uint32
|
|
myCurrentDHPub *big.Int
|
|
myCurrentDHPriv *big.Int
|
|
myLastDHPub *big.Int
|
|
myLastDHPriv *big.Int
|
|
|
|
theirKeyId uint32
|
|
theirCurrentDHPub *big.Int
|
|
theirLastDHPub *big.Int
|
|
|
|
keySlots [4]keySlot
|
|
|
|
myCounter [8]byte
|
|
theirLastCtr [8]byte
|
|
oldMACs []byte
|
|
|
|
k, n int // fragment state
|
|
frag []byte
|
|
|
|
smp smpState
|
|
}
|
|
|
|
// A keySlot contains key material for a specific (their keyid, my keyid) pair.
|
|
type keySlot struct {
|
|
// used is true if this slot is valid. If false, it's free for reuse.
|
|
used bool
|
|
theirKeyId uint32
|
|
myKeyId uint32
|
|
sendAESKey, recvAESKey []byte
|
|
sendMACKey, recvMACKey []byte
|
|
theirLastCtr [8]byte
|
|
}
|
|
|
|
// akeKeys are generated during key exchange. There's one set for the reveal
|
|
// signature message and another for the signature message. In the protocol
|
|
// spec the latter are indicated with a prime mark.
|
|
type akeKeys struct {
|
|
c [16]byte
|
|
m1, m2 [32]byte
|
|
}
|
|
|
|
func (c *Conversation) rand() io.Reader {
|
|
if c.Rand != nil {
|
|
return c.Rand
|
|
}
|
|
return rand.Reader
|
|
}
|
|
|
|
func (c *Conversation) randMPI(buf []byte) *big.Int {
|
|
_, err := io.ReadFull(c.rand(), buf)
|
|
if err != nil {
|
|
panic("otr: short read from random source")
|
|
}
|
|
|
|
return new(big.Int).SetBytes(buf)
|
|
}
|
|
|
|
// tlv represents the type-length value from the protocol.
|
|
type tlv struct {
|
|
typ, length uint16
|
|
data []byte
|
|
}
|
|
|
|
const (
|
|
tlvTypePadding = 0
|
|
tlvTypeDisconnected = 1
|
|
tlvTypeSMP1 = 2
|
|
tlvTypeSMP2 = 3
|
|
tlvTypeSMP3 = 4
|
|
tlvTypeSMP4 = 5
|
|
tlvTypeSMPAbort = 6
|
|
tlvTypeSMP1WithQuestion = 7
|
|
)
|
|
|
|
// Receive handles a message from a peer. It returns a human readable message,
|
|
// an indicator of whether that message was encrypted, a hint about the
|
|
// encryption state and zero or more messages to send back to the peer.
|
|
// These messages do not need to be passed to Send before transmission.
|
|
func (c *Conversation) Receive(in []byte) (out []byte, encrypted bool, change SecurityChange, toSend [][]byte, err error) {
|
|
if bytes.HasPrefix(in, fragmentPrefix) {
|
|
in, err = c.processFragment(in)
|
|
if in == nil || err != nil {
|
|
return
|
|
}
|
|
}
|
|
|
|
if bytes.HasPrefix(in, msgPrefix) && in[len(in)-1] == '.' {
|
|
in = in[len(msgPrefix) : len(in)-1]
|
|
} else if version := isQuery(in); version > 0 {
|
|
c.authState = authStateAwaitingDHKey
|
|
c.reset()
|
|
toSend = c.encode(c.generateDHCommit())
|
|
return
|
|
} else {
|
|
// plaintext message
|
|
out = in
|
|
return
|
|
}
|
|
|
|
msg := make([]byte, base64.StdEncoding.DecodedLen(len(in)))
|
|
msgLen, err := base64.StdEncoding.Decode(msg, in)
|
|
if err != nil {
|
|
err = errors.New("otr: invalid base64 encoding in message")
|
|
return
|
|
}
|
|
msg = msg[:msgLen]
|
|
|
|
// The first two bytes are the protocol version (2)
|
|
if len(msg) < 3 || msg[0] != 0 || msg[1] != 2 {
|
|
err = errors.New("otr: invalid OTR message")
|
|
return
|
|
}
|
|
|
|
msgType := int(msg[2])
|
|
msg = msg[3:]
|
|
|
|
switch msgType {
|
|
case msgTypeDHCommit:
|
|
switch c.authState {
|
|
case authStateNone:
|
|
c.authState = authStateAwaitingRevealSig
|
|
if err = c.processDHCommit(msg); err != nil {
|
|
return
|
|
}
|
|
c.reset()
|
|
toSend = c.encode(c.generateDHKey())
|
|
return
|
|
case authStateAwaitingDHKey:
|
|
// This is a 'SYN-crossing'. The greater digest wins.
|
|
var cmp int
|
|
if cmp, err = c.compareToDHCommit(msg); err != nil {
|
|
return
|
|
}
|
|
if cmp > 0 {
|
|
// We win. Retransmit DH commit.
|
|
toSend = c.encode(c.serializeDHCommit())
|
|
return
|
|
} else {
|
|
// They win. We forget about our DH commit.
|
|
c.authState = authStateAwaitingRevealSig
|
|
if err = c.processDHCommit(msg); err != nil {
|
|
return
|
|
}
|
|
c.reset()
|
|
toSend = c.encode(c.generateDHKey())
|
|
return
|
|
}
|
|
case authStateAwaitingRevealSig:
|
|
if err = c.processDHCommit(msg); err != nil {
|
|
return
|
|
}
|
|
toSend = c.encode(c.serializeDHKey())
|
|
case authStateAwaitingSig:
|
|
if err = c.processDHCommit(msg); err != nil {
|
|
return
|
|
}
|
|
c.reset()
|
|
toSend = c.encode(c.generateDHKey())
|
|
c.authState = authStateAwaitingRevealSig
|
|
default:
|
|
panic("bad state")
|
|
}
|
|
case msgTypeDHKey:
|
|
switch c.authState {
|
|
case authStateAwaitingDHKey:
|
|
var isSame bool
|
|
if isSame, err = c.processDHKey(msg); err != nil {
|
|
return
|
|
}
|
|
if isSame {
|
|
err = errors.New("otr: unexpected duplicate DH key")
|
|
return
|
|
}
|
|
toSend = c.encode(c.generateRevealSig())
|
|
c.authState = authStateAwaitingSig
|
|
case authStateAwaitingSig:
|
|
var isSame bool
|
|
if isSame, err = c.processDHKey(msg); err != nil {
|
|
return
|
|
}
|
|
if isSame {
|
|
toSend = c.encode(c.serializeDHKey())
|
|
}
|
|
}
|
|
case msgTypeRevealSig:
|
|
if c.authState != authStateAwaitingRevealSig {
|
|
return
|
|
}
|
|
if err = c.processRevealSig(msg); err != nil {
|
|
return
|
|
}
|
|
toSend = c.encode(c.generateSig())
|
|
c.authState = authStateNone
|
|
c.state = stateEncrypted
|
|
change = NewKeys
|
|
case msgTypeSig:
|
|
if c.authState != authStateAwaitingSig {
|
|
return
|
|
}
|
|
if err = c.processSig(msg); err != nil {
|
|
return
|
|
}
|
|
c.authState = authStateNone
|
|
c.state = stateEncrypted
|
|
change = NewKeys
|
|
case msgTypeData:
|
|
if c.state != stateEncrypted {
|
|
err = errors.New("otr: encrypted message received without encrypted session established")
|
|
return
|
|
}
|
|
var tlvs []tlv
|
|
out, tlvs, err = c.processData(msg)
|
|
encrypted = true
|
|
|
|
EachTLV:
|
|
for _, inTLV := range tlvs {
|
|
switch inTLV.typ {
|
|
case tlvTypeDisconnected:
|
|
change = ConversationEnded
|
|
c.state = stateFinished
|
|
break EachTLV
|
|
case tlvTypeSMP1, tlvTypeSMP2, tlvTypeSMP3, tlvTypeSMP4, tlvTypeSMPAbort, tlvTypeSMP1WithQuestion:
|
|
var reply tlv
|
|
var complete bool
|
|
reply, complete, err = c.processSMP(inTLV)
|
|
if err == smpSecretMissingError {
|
|
err = nil
|
|
change = SMPSecretNeeded
|
|
c.smp.saved = &inTLV
|
|
return
|
|
}
|
|
if err == smpFailureError {
|
|
err = nil
|
|
change = SMPFailed
|
|
} else if complete {
|
|
change = SMPComplete
|
|
}
|
|
if reply.typ != 0 {
|
|
toSend = c.encode(c.generateData(nil, &reply))
|
|
}
|
|
break EachTLV
|
|
default:
|
|
// skip unknown TLVs
|
|
}
|
|
}
|
|
default:
|
|
err = errors.New("otr: unknown message type " + strconv.Itoa(msgType))
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
// Send takes a human readable message from the local user, possibly encrypts
|
|
// it and returns zero one or more messages to send to the peer.
|
|
func (c *Conversation) Send(msg []byte) ([][]byte, error) {
|
|
switch c.state {
|
|
case statePlaintext:
|
|
return [][]byte{msg}, nil
|
|
case stateEncrypted:
|
|
return c.encode(c.generateData(msg, nil)), nil
|
|
case stateFinished:
|
|
return nil, errors.New("otr: cannot send message because secure conversation has finished")
|
|
}
|
|
|
|
return nil, errors.New("otr: cannot send message in current state")
|
|
}
|
|
|
|
// SMPQuestion returns the human readable challenge question from the peer.
|
|
// It's only valid after Receive has returned SMPSecretNeeded.
|
|
func (c *Conversation) SMPQuestion() string {
|
|
return c.smp.question
|
|
}
|
|
|
|
// Authenticate begins an authentication with the peer. Authentication involves
|
|
// an optional challenge message and a shared secret. The authentication
|
|
// proceeds until either Receive returns SMPComplete, SMPSecretNeeded (which
|
|
// indicates that a new authentication is happening and thus this one was
|
|
// aborted) or SMPFailed.
|
|
func (c *Conversation) Authenticate(question string, mutualSecret []byte) (toSend [][]byte, err error) {
|
|
if c.state != stateEncrypted {
|
|
err = errors.New("otr: can't authenticate a peer without a secure conversation established")
|
|
return
|
|
}
|
|
|
|
if c.smp.saved != nil {
|
|
c.calcSMPSecret(mutualSecret, false /* they started it */)
|
|
|
|
var out tlv
|
|
var complete bool
|
|
out, complete, err = c.processSMP(*c.smp.saved)
|
|
if complete {
|
|
panic("SMP completed on the first message")
|
|
}
|
|
c.smp.saved = nil
|
|
if out.typ != 0 {
|
|
toSend = c.encode(c.generateData(nil, &out))
|
|
}
|
|
return
|
|
}
|
|
|
|
c.calcSMPSecret(mutualSecret, true /* we started it */)
|
|
outs := c.startSMP(question)
|
|
for _, out := range outs {
|
|
toSend = append(toSend, c.encode(c.generateData(nil, &out))...)
|
|
}
|
|
return
|
|
}
|
|
|
|
// End ends a secure conversation by generating a termination message for
|
|
// the peer and switches to unencrypted communication.
|
|
func (c *Conversation) End() (toSend [][]byte) {
|
|
switch c.state {
|
|
case statePlaintext:
|
|
return nil
|
|
case stateEncrypted:
|
|
c.state = statePlaintext
|
|
return c.encode(c.generateData(nil, &tlv{typ: tlvTypeDisconnected}))
|
|
case stateFinished:
|
|
c.state = statePlaintext
|
|
return nil
|
|
}
|
|
panic("unreachable")
|
|
}
|
|
|
|
// IsEncrypted returns true if a message passed to Send would be encrypted
|
|
// before transmission. This result remains valid until the next call to
|
|
// Receive or End, which may change the state of the Conversation.
|
|
func (c *Conversation) IsEncrypted() bool {
|
|
return c.state == stateEncrypted
|
|
}
|
|
|
|
var fragmentError = errors.New("otr: invalid OTR fragment")
|
|
|
|
// processFragment processes a fragmented OTR message and possibly returns a
|
|
// complete message. Fragmented messages look like "?OTR,k,n,msg," where k is
|
|
// the fragment number (starting from 1), n is the number of fragments in this
|
|
// message and msg is a substring of the base64 encoded message.
|
|
func (c *Conversation) processFragment(in []byte) (out []byte, err error) {
|
|
in = in[len(fragmentPrefix):] // remove "?OTR,"
|
|
parts := bytes.Split(in, fragmentPartSeparator)
|
|
if len(parts) != 4 || len(parts[3]) != 0 {
|
|
return nil, fragmentError
|
|
}
|
|
|
|
k, err := strconv.Atoi(string(parts[0]))
|
|
if err != nil {
|
|
return nil, fragmentError
|
|
}
|
|
|
|
n, err := strconv.Atoi(string(parts[1]))
|
|
if err != nil {
|
|
return nil, fragmentError
|
|
}
|
|
|
|
if k < 1 || n < 1 || k > n {
|
|
return nil, fragmentError
|
|
}
|
|
|
|
if k == 1 {
|
|
c.frag = append(c.frag[:0], parts[2]...)
|
|
c.k, c.n = k, n
|
|
} else if n == c.n && k == c.k+1 {
|
|
c.frag = append(c.frag, parts[2]...)
|
|
c.k++
|
|
} else {
|
|
c.frag = c.frag[:0]
|
|
c.n, c.k = 0, 0
|
|
}
|
|
|
|
if c.n > 0 && c.k == c.n {
|
|
c.n, c.k = 0, 0
|
|
return c.frag, nil
|
|
}
|
|
|
|
return nil, nil
|
|
}
|
|
|
|
func (c *Conversation) generateDHCommit() []byte {
|
|
_, err := io.ReadFull(c.rand(), c.r[:])
|
|
if err != nil {
|
|
panic("otr: short read from random source")
|
|
}
|
|
|
|
var xBytes [dhPrivateBytes]byte
|
|
c.x = c.randMPI(xBytes[:])
|
|
c.gx = new(big.Int).Exp(g, c.x, p)
|
|
c.gy = nil
|
|
c.gxBytes = appendMPI(nil, c.gx)
|
|
|
|
h := sha256.New()
|
|
h.Write(c.gxBytes)
|
|
h.Sum(c.digest[:0])
|
|
|
|
aesCipher, err := aes.NewCipher(c.r[:])
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
|
|
var iv [aes.BlockSize]byte
|
|
ctr := cipher.NewCTR(aesCipher, iv[:])
|
|
ctr.XORKeyStream(c.gxBytes, c.gxBytes)
|
|
|
|
return c.serializeDHCommit()
|
|
}
|
|
|
|
func (c *Conversation) serializeDHCommit() []byte {
|
|
var ret []byte
|
|
ret = appendU16(ret, 2) // protocol version
|
|
ret = append(ret, msgTypeDHCommit)
|
|
ret = appendData(ret, c.gxBytes)
|
|
ret = appendData(ret, c.digest[:])
|
|
return ret
|
|
}
|
|
|
|
func (c *Conversation) processDHCommit(in []byte) error {
|
|
var ok1, ok2 bool
|
|
c.gxBytes, in, ok1 = getData(in)
|
|
digest, in, ok2 := getData(in)
|
|
if !ok1 || !ok2 || len(in) > 0 {
|
|
return errors.New("otr: corrupt DH commit message")
|
|
}
|
|
copy(c.digest[:], digest)
|
|
return nil
|
|
}
|
|
|
|
func (c *Conversation) compareToDHCommit(in []byte) (int, error) {
|
|
_, in, ok1 := getData(in)
|
|
digest, in, ok2 := getData(in)
|
|
if !ok1 || !ok2 || len(in) > 0 {
|
|
return 0, errors.New("otr: corrupt DH commit message")
|
|
}
|
|
return bytes.Compare(c.digest[:], digest), nil
|
|
}
|
|
|
|
func (c *Conversation) generateDHKey() []byte {
|
|
var yBytes [dhPrivateBytes]byte
|
|
c.y = c.randMPI(yBytes[:])
|
|
c.gy = new(big.Int).Exp(g, c.y, p)
|
|
return c.serializeDHKey()
|
|
}
|
|
|
|
func (c *Conversation) serializeDHKey() []byte {
|
|
var ret []byte
|
|
ret = appendU16(ret, 2) // protocol version
|
|
ret = append(ret, msgTypeDHKey)
|
|
ret = appendMPI(ret, c.gy)
|
|
return ret
|
|
}
|
|
|
|
func (c *Conversation) processDHKey(in []byte) (isSame bool, err error) {
|
|
gy, in, ok := getMPI(in)
|
|
if !ok {
|
|
err = errors.New("otr: corrupt DH key message")
|
|
return
|
|
}
|
|
if gy.Cmp(g) < 0 || gy.Cmp(pMinus2) > 0 {
|
|
err = errors.New("otr: DH value out of range")
|
|
return
|
|
}
|
|
if c.gy != nil {
|
|
isSame = c.gy.Cmp(gy) == 0
|
|
return
|
|
}
|
|
c.gy = gy
|
|
return
|
|
}
|
|
|
|
func (c *Conversation) generateEncryptedSignature(keys *akeKeys, xFirst bool) ([]byte, []byte) {
|
|
var xb []byte
|
|
xb = c.PrivateKey.PublicKey.Serialize(xb)
|
|
|
|
var verifyData []byte
|
|
if xFirst {
|
|
verifyData = appendMPI(verifyData, c.gx)
|
|
verifyData = appendMPI(verifyData, c.gy)
|
|
} else {
|
|
verifyData = appendMPI(verifyData, c.gy)
|
|
verifyData = appendMPI(verifyData, c.gx)
|
|
}
|
|
verifyData = append(verifyData, xb...)
|
|
verifyData = appendU32(verifyData, c.myKeyId)
|
|
|
|
mac := hmac.New(sha256.New, keys.m1[:])
|
|
mac.Write(verifyData)
|
|
mb := mac.Sum(nil)
|
|
|
|
xb = appendU32(xb, c.myKeyId)
|
|
xb = append(xb, c.PrivateKey.Sign(c.rand(), mb)...)
|
|
|
|
aesCipher, err := aes.NewCipher(keys.c[:])
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
var iv [aes.BlockSize]byte
|
|
ctr := cipher.NewCTR(aesCipher, iv[:])
|
|
ctr.XORKeyStream(xb, xb)
|
|
|
|
mac = hmac.New(sha256.New, keys.m2[:])
|
|
encryptedSig := appendData(nil, xb)
|
|
mac.Write(encryptedSig)
|
|
|
|
return encryptedSig, mac.Sum(nil)
|
|
}
|
|
|
|
func (c *Conversation) generateRevealSig() []byte {
|
|
s := new(big.Int).Exp(c.gy, c.x, p)
|
|
c.calcAKEKeys(s)
|
|
c.myKeyId++
|
|
|
|
encryptedSig, mac := c.generateEncryptedSignature(&c.revealKeys, true /* gx comes first */)
|
|
|
|
c.myCurrentDHPub = c.gx
|
|
c.myCurrentDHPriv = c.x
|
|
c.rotateDHKeys()
|
|
incCounter(&c.myCounter)
|
|
|
|
var ret []byte
|
|
ret = appendU16(ret, 2)
|
|
ret = append(ret, msgTypeRevealSig)
|
|
ret = appendData(ret, c.r[:])
|
|
ret = append(ret, encryptedSig...)
|
|
ret = append(ret, mac[:20]...)
|
|
return ret
|
|
}
|
|
|
|
func (c *Conversation) processEncryptedSig(encryptedSig, theirMAC []byte, keys *akeKeys, xFirst bool) error {
|
|
mac := hmac.New(sha256.New, keys.m2[:])
|
|
mac.Write(appendData(nil, encryptedSig))
|
|
myMAC := mac.Sum(nil)[:20]
|
|
|
|
if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
|
|
return errors.New("bad signature MAC in encrypted signature")
|
|
}
|
|
|
|
aesCipher, err := aes.NewCipher(keys.c[:])
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
var iv [aes.BlockSize]byte
|
|
ctr := cipher.NewCTR(aesCipher, iv[:])
|
|
ctr.XORKeyStream(encryptedSig, encryptedSig)
|
|
|
|
sig := encryptedSig
|
|
sig, ok1 := c.TheirPublicKey.Parse(sig)
|
|
keyId, sig, ok2 := getU32(sig)
|
|
if !ok1 || !ok2 {
|
|
return errors.New("otr: corrupt encrypted signature")
|
|
}
|
|
|
|
var verifyData []byte
|
|
if xFirst {
|
|
verifyData = appendMPI(verifyData, c.gx)
|
|
verifyData = appendMPI(verifyData, c.gy)
|
|
} else {
|
|
verifyData = appendMPI(verifyData, c.gy)
|
|
verifyData = appendMPI(verifyData, c.gx)
|
|
}
|
|
verifyData = c.TheirPublicKey.Serialize(verifyData)
|
|
verifyData = appendU32(verifyData, keyId)
|
|
|
|
mac = hmac.New(sha256.New, keys.m1[:])
|
|
mac.Write(verifyData)
|
|
mb := mac.Sum(nil)
|
|
|
|
sig, ok1 = c.TheirPublicKey.Verify(mb, sig)
|
|
if !ok1 {
|
|
return errors.New("bad signature in encrypted signature")
|
|
}
|
|
if len(sig) > 0 {
|
|
return errors.New("corrupt encrypted signature")
|
|
}
|
|
|
|
c.theirKeyId = keyId
|
|
zero(c.theirLastCtr[:])
|
|
return nil
|
|
}
|
|
|
|
func (c *Conversation) processRevealSig(in []byte) error {
|
|
r, in, ok1 := getData(in)
|
|
encryptedSig, in, ok2 := getData(in)
|
|
theirMAC := in
|
|
if !ok1 || !ok2 || len(theirMAC) != 20 {
|
|
return errors.New("otr: corrupt reveal signature message")
|
|
}
|
|
|
|
aesCipher, err := aes.NewCipher(r)
|
|
if err != nil {
|
|
return errors.New("otr: cannot create AES cipher from reveal signature message: " + err.Error())
|
|
}
|
|
var iv [aes.BlockSize]byte
|
|
ctr := cipher.NewCTR(aesCipher, iv[:])
|
|
ctr.XORKeyStream(c.gxBytes, c.gxBytes)
|
|
h := sha256.New()
|
|
h.Write(c.gxBytes)
|
|
digest := h.Sum(nil)
|
|
if len(digest) != len(c.digest) || subtle.ConstantTimeCompare(digest, c.digest[:]) == 0 {
|
|
return errors.New("otr: bad commit MAC in reveal signature message")
|
|
}
|
|
var rest []byte
|
|
c.gx, rest, ok1 = getMPI(c.gxBytes)
|
|
if !ok1 || len(rest) > 0 {
|
|
return errors.New("otr: gx corrupt after decryption")
|
|
}
|
|
if c.gx.Cmp(g) < 0 || c.gx.Cmp(pMinus2) > 0 {
|
|
return errors.New("otr: DH value out of range")
|
|
}
|
|
s := new(big.Int).Exp(c.gx, c.y, p)
|
|
c.calcAKEKeys(s)
|
|
|
|
if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.revealKeys, true /* gx comes first */); err != nil {
|
|
return errors.New("otr: in reveal signature message: " + err.Error())
|
|
}
|
|
|
|
c.theirCurrentDHPub = c.gx
|
|
c.theirLastDHPub = nil
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c *Conversation) generateSig() []byte {
|
|
c.myKeyId++
|
|
|
|
encryptedSig, mac := c.generateEncryptedSignature(&c.sigKeys, false /* gy comes first */)
|
|
|
|
c.myCurrentDHPub = c.gy
|
|
c.myCurrentDHPriv = c.y
|
|
c.rotateDHKeys()
|
|
incCounter(&c.myCounter)
|
|
|
|
var ret []byte
|
|
ret = appendU16(ret, 2)
|
|
ret = append(ret, msgTypeSig)
|
|
ret = append(ret, encryptedSig...)
|
|
ret = append(ret, mac[:macPrefixBytes]...)
|
|
return ret
|
|
}
|
|
|
|
func (c *Conversation) processSig(in []byte) error {
|
|
encryptedSig, in, ok1 := getData(in)
|
|
theirMAC := in
|
|
if !ok1 || len(theirMAC) != macPrefixBytes {
|
|
return errors.New("otr: corrupt signature message")
|
|
}
|
|
|
|
if err := c.processEncryptedSig(encryptedSig, theirMAC, &c.sigKeys, false /* gy comes first */); err != nil {
|
|
return errors.New("otr: in signature message: " + err.Error())
|
|
}
|
|
|
|
c.theirCurrentDHPub = c.gy
|
|
c.theirLastDHPub = nil
|
|
|
|
return nil
|
|
}
|
|
|
|
func (c *Conversation) rotateDHKeys() {
|
|
// evict slots using our retired key id
|
|
for i := range c.keySlots {
|
|
slot := &c.keySlots[i]
|
|
if slot.used && slot.myKeyId == c.myKeyId-1 {
|
|
slot.used = false
|
|
c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
|
|
}
|
|
}
|
|
|
|
c.myLastDHPriv = c.myCurrentDHPriv
|
|
c.myLastDHPub = c.myCurrentDHPub
|
|
|
|
var xBytes [dhPrivateBytes]byte
|
|
c.myCurrentDHPriv = c.randMPI(xBytes[:])
|
|
c.myCurrentDHPub = new(big.Int).Exp(g, c.myCurrentDHPriv, p)
|
|
c.myKeyId++
|
|
}
|
|
|
|
func (c *Conversation) processData(in []byte) (out []byte, tlvs []tlv, err error) {
|
|
origIn := in
|
|
flags, in, ok1 := getU8(in)
|
|
theirKeyId, in, ok2 := getU32(in)
|
|
myKeyId, in, ok3 := getU32(in)
|
|
y, in, ok4 := getMPI(in)
|
|
counter, in, ok5 := getNBytes(in, 8)
|
|
encrypted, in, ok6 := getData(in)
|
|
macedData := origIn[:len(origIn)-len(in)]
|
|
theirMAC, in, ok7 := getNBytes(in, macPrefixBytes)
|
|
_, in, ok8 := getData(in)
|
|
if !ok1 || !ok2 || !ok3 || !ok4 || !ok5 || !ok6 || !ok7 || !ok8 || len(in) > 0 {
|
|
err = errors.New("otr: corrupt data message")
|
|
return
|
|
}
|
|
|
|
ignoreErrors := flags&1 != 0
|
|
|
|
slot, err := c.calcDataKeys(myKeyId, theirKeyId)
|
|
if err != nil {
|
|
if ignoreErrors {
|
|
err = nil
|
|
}
|
|
return
|
|
}
|
|
|
|
mac := hmac.New(sha1.New, slot.recvMACKey)
|
|
mac.Write([]byte{0, 2, 3})
|
|
mac.Write(macedData)
|
|
myMAC := mac.Sum(nil)
|
|
if len(myMAC) != len(theirMAC) || subtle.ConstantTimeCompare(myMAC, theirMAC) == 0 {
|
|
if !ignoreErrors {
|
|
err = errors.New("otr: bad MAC on data message")
|
|
}
|
|
return
|
|
}
|
|
|
|
if bytes.Compare(counter, slot.theirLastCtr[:]) <= 0 {
|
|
err = errors.New("otr: counter regressed")
|
|
return
|
|
}
|
|
copy(slot.theirLastCtr[:], counter)
|
|
|
|
var iv [aes.BlockSize]byte
|
|
copy(iv[:], counter)
|
|
aesCipher, err := aes.NewCipher(slot.recvAESKey)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
ctr := cipher.NewCTR(aesCipher, iv[:])
|
|
ctr.XORKeyStream(encrypted, encrypted)
|
|
decrypted := encrypted
|
|
|
|
if myKeyId == c.myKeyId {
|
|
c.rotateDHKeys()
|
|
}
|
|
if theirKeyId == c.theirKeyId {
|
|
// evict slots using their retired key id
|
|
for i := range c.keySlots {
|
|
slot := &c.keySlots[i]
|
|
if slot.used && slot.theirKeyId == theirKeyId-1 {
|
|
slot.used = false
|
|
c.oldMACs = append(c.oldMACs, slot.recvMACKey...)
|
|
}
|
|
}
|
|
|
|
c.theirLastDHPub = c.theirCurrentDHPub
|
|
c.theirKeyId++
|
|
c.theirCurrentDHPub = y
|
|
}
|
|
|
|
if nulPos := bytes.IndexByte(decrypted, 0); nulPos >= 0 {
|
|
out = decrypted[:nulPos]
|
|
tlvData := decrypted[nulPos+1:]
|
|
for len(tlvData) > 0 {
|
|
var t tlv
|
|
var ok1, ok2, ok3 bool
|
|
|
|
t.typ, tlvData, ok1 = getU16(tlvData)
|
|
t.length, tlvData, ok2 = getU16(tlvData)
|
|
t.data, tlvData, ok3 = getNBytes(tlvData, int(t.length))
|
|
if !ok1 || !ok2 || !ok3 {
|
|
err = errors.New("otr: corrupt tlv data")
|
|
return
|
|
}
|
|
tlvs = append(tlvs, t)
|
|
}
|
|
} else {
|
|
out = decrypted
|
|
}
|
|
|
|
return
|
|
}
|
|
|
|
func (c *Conversation) generateData(msg []byte, extra *tlv) []byte {
|
|
slot, err := c.calcDataKeys(c.myKeyId-1, c.theirKeyId)
|
|
if err != nil {
|
|
panic("otr: failed to generate sending keys: " + err.Error())
|
|
}
|
|
|
|
var plaintext []byte
|
|
plaintext = append(plaintext, msg...)
|
|
plaintext = append(plaintext, 0)
|
|
|
|
padding := paddingGranularity - ((len(plaintext) + 4) % paddingGranularity)
|
|
plaintext = appendU16(plaintext, tlvTypePadding)
|
|
plaintext = appendU16(plaintext, uint16(padding))
|
|
for i := 0; i < padding; i++ {
|
|
plaintext = append(plaintext, 0)
|
|
}
|
|
|
|
if extra != nil {
|
|
plaintext = appendU16(plaintext, extra.typ)
|
|
plaintext = appendU16(plaintext, uint16(len(extra.data)))
|
|
plaintext = append(plaintext, extra.data...)
|
|
}
|
|
|
|
encrypted := make([]byte, len(plaintext))
|
|
|
|
var iv [aes.BlockSize]byte
|
|
copy(iv[:], c.myCounter[:])
|
|
aesCipher, err := aes.NewCipher(slot.sendAESKey)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
ctr := cipher.NewCTR(aesCipher, iv[:])
|
|
ctr.XORKeyStream(encrypted, plaintext)
|
|
|
|
var ret []byte
|
|
ret = appendU16(ret, 2)
|
|
ret = append(ret, msgTypeData)
|
|
ret = append(ret, 0 /* flags */)
|
|
ret = appendU32(ret, c.myKeyId-1)
|
|
ret = appendU32(ret, c.theirKeyId)
|
|
ret = appendMPI(ret, c.myCurrentDHPub)
|
|
ret = append(ret, c.myCounter[:]...)
|
|
ret = appendData(ret, encrypted)
|
|
|
|
mac := hmac.New(sha1.New, slot.sendMACKey)
|
|
mac.Write(ret)
|
|
ret = append(ret, mac.Sum(nil)[:macPrefixBytes]...)
|
|
ret = appendData(ret, c.oldMACs)
|
|
c.oldMACs = nil
|
|
incCounter(&c.myCounter)
|
|
|
|
return ret
|
|
}
|
|
|
|
func incCounter(counter *[8]byte) {
|
|
for i := 7; i >= 0; i-- {
|
|
counter[i]++
|
|
if counter[i] > 0 {
|
|
break
|
|
}
|
|
}
|
|
}
|
|
|
|
// calcDataKeys computes the keys used to encrypt a data message given the key
|
|
// IDs.
|
|
func (c *Conversation) calcDataKeys(myKeyId, theirKeyId uint32) (slot *keySlot, err error) {
|
|
// Check for a cache hit.
|
|
for i := range c.keySlots {
|
|
slot = &c.keySlots[i]
|
|
if slot.used && slot.theirKeyId == theirKeyId && slot.myKeyId == myKeyId {
|
|
return
|
|
}
|
|
}
|
|
|
|
// Find an empty slot to write into.
|
|
slot = nil
|
|
for i := range c.keySlots {
|
|
if !c.keySlots[i].used {
|
|
slot = &c.keySlots[i]
|
|
break
|
|
}
|
|
}
|
|
if slot == nil {
|
|
return nil, errors.New("otr: internal error: no more key slots")
|
|
}
|
|
|
|
var myPriv, myPub, theirPub *big.Int
|
|
|
|
if myKeyId == c.myKeyId {
|
|
myPriv = c.myCurrentDHPriv
|
|
myPub = c.myCurrentDHPub
|
|
} else if myKeyId == c.myKeyId-1 {
|
|
myPriv = c.myLastDHPriv
|
|
myPub = c.myLastDHPub
|
|
} else {
|
|
err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when I'm on " + strconv.FormatUint(uint64(c.myKeyId), 10))
|
|
return
|
|
}
|
|
|
|
if theirKeyId == c.theirKeyId {
|
|
theirPub = c.theirCurrentDHPub
|
|
} else if theirKeyId == c.theirKeyId-1 && c.theirLastDHPub != nil {
|
|
theirPub = c.theirLastDHPub
|
|
} else {
|
|
err = errors.New("otr: peer requested keyid " + strconv.FormatUint(uint64(myKeyId), 10) + " when they're on " + strconv.FormatUint(uint64(c.myKeyId), 10))
|
|
return
|
|
}
|
|
|
|
var sendPrefixByte, recvPrefixByte [1]byte
|
|
|
|
if myPub.Cmp(theirPub) > 0 {
|
|
// we're the high end
|
|
sendPrefixByte[0], recvPrefixByte[0] = 1, 2
|
|
} else {
|
|
// we're the low end
|
|
sendPrefixByte[0], recvPrefixByte[0] = 2, 1
|
|
}
|
|
|
|
s := new(big.Int).Exp(theirPub, myPriv, p)
|
|
sBytes := appendMPI(nil, s)
|
|
|
|
h := sha1.New()
|
|
h.Write(sendPrefixByte[:])
|
|
h.Write(sBytes)
|
|
slot.sendAESKey = h.Sum(slot.sendAESKey[:0])[:16]
|
|
|
|
h.Reset()
|
|
h.Write(slot.sendAESKey)
|
|
slot.sendMACKey = h.Sum(slot.sendMACKey[:0])
|
|
|
|
h.Reset()
|
|
h.Write(recvPrefixByte[:])
|
|
h.Write(sBytes)
|
|
slot.recvAESKey = h.Sum(slot.recvAESKey[:0])[:16]
|
|
|
|
h.Reset()
|
|
h.Write(slot.recvAESKey)
|
|
slot.recvMACKey = h.Sum(slot.recvMACKey[:0])
|
|
|
|
slot.theirKeyId = theirKeyId
|
|
slot.myKeyId = myKeyId
|
|
slot.used = true
|
|
|
|
zero(slot.theirLastCtr[:])
|
|
return
|
|
}
|
|
|
|
func (c *Conversation) calcAKEKeys(s *big.Int) {
|
|
mpi := appendMPI(nil, s)
|
|
h := sha256.New()
|
|
|
|
var cBytes [32]byte
|
|
hashWithPrefix(c.SSID[:], 0, mpi, h)
|
|
|
|
hashWithPrefix(cBytes[:], 1, mpi, h)
|
|
copy(c.revealKeys.c[:], cBytes[:16])
|
|
copy(c.sigKeys.c[:], cBytes[16:])
|
|
|
|
hashWithPrefix(c.revealKeys.m1[:], 2, mpi, h)
|
|
hashWithPrefix(c.revealKeys.m2[:], 3, mpi, h)
|
|
hashWithPrefix(c.sigKeys.m1[:], 4, mpi, h)
|
|
hashWithPrefix(c.sigKeys.m2[:], 5, mpi, h)
|
|
}
|
|
|
|
func hashWithPrefix(out []byte, prefix byte, in []byte, h hash.Hash) {
|
|
h.Reset()
|
|
var p [1]byte
|
|
p[0] = prefix
|
|
h.Write(p[:])
|
|
h.Write(in)
|
|
if len(out) == h.Size() {
|
|
h.Sum(out[:0])
|
|
} else {
|
|
digest := h.Sum(nil)
|
|
copy(out, digest)
|
|
}
|
|
}
|
|
|
|
func (c *Conversation) encode(msg []byte) [][]byte {
|
|
b64 := make([]byte, base64.StdEncoding.EncodedLen(len(msg))+len(msgPrefix)+1)
|
|
base64.StdEncoding.Encode(b64[len(msgPrefix):], msg)
|
|
copy(b64, msgPrefix)
|
|
b64[len(b64)-1] = '.'
|
|
|
|
if c.FragmentSize < minFragmentSize || len(b64) <= c.FragmentSize {
|
|
// We can encode this in a single fragment.
|
|
return [][]byte{b64}
|
|
}
|
|
|
|
// We have to fragment this message.
|
|
var ret [][]byte
|
|
bytesPerFragment := c.FragmentSize - minFragmentSize
|
|
numFragments := (len(b64) + bytesPerFragment) / bytesPerFragment
|
|
|
|
for i := 0; i < numFragments; i++ {
|
|
frag := []byte("?OTR," + strconv.Itoa(i+1) + "," + strconv.Itoa(numFragments) + ",")
|
|
todo := bytesPerFragment
|
|
if todo > len(b64) {
|
|
todo = len(b64)
|
|
}
|
|
frag = append(frag, b64[:todo]...)
|
|
b64 = b64[todo:]
|
|
frag = append(frag, ',')
|
|
ret = append(ret, frag)
|
|
}
|
|
|
|
return ret
|
|
}
|
|
|
|
func (c *Conversation) reset() {
|
|
c.myKeyId = 0
|
|
|
|
for i := range c.keySlots {
|
|
c.keySlots[i].used = false
|
|
}
|
|
}
|
|
|
|
type PublicKey struct {
|
|
dsa.PublicKey
|
|
}
|
|
|
|
func (pk *PublicKey) Parse(in []byte) ([]byte, bool) {
|
|
var ok bool
|
|
var pubKeyType uint16
|
|
|
|
if pubKeyType, in, ok = getU16(in); !ok || pubKeyType != 0 {
|
|
return nil, false
|
|
}
|
|
if pk.P, in, ok = getMPI(in); !ok {
|
|
return nil, false
|
|
}
|
|
if pk.Q, in, ok = getMPI(in); !ok {
|
|
return nil, false
|
|
}
|
|
if pk.G, in, ok = getMPI(in); !ok {
|
|
return nil, false
|
|
}
|
|
if pk.Y, in, ok = getMPI(in); !ok {
|
|
return nil, false
|
|
}
|
|
|
|
return in, true
|
|
}
|
|
|
|
func (pk *PublicKey) Serialize(in []byte) []byte {
|
|
in = appendU16(in, 0)
|
|
in = appendMPI(in, pk.P)
|
|
in = appendMPI(in, pk.Q)
|
|
in = appendMPI(in, pk.G)
|
|
in = appendMPI(in, pk.Y)
|
|
return in
|
|
}
|
|
|
|
// Fingerprint returns the 20-byte, binary fingerprint of the PublicKey.
|
|
func (pk *PublicKey) Fingerprint() []byte {
|
|
b := pk.Serialize(nil)
|
|
h := sha1.New()
|
|
h.Write(b[2:])
|
|
return h.Sum(nil)
|
|
}
|
|
|
|
func (pk *PublicKey) Verify(hashed, sig []byte) ([]byte, bool) {
|
|
if len(sig) != 2*dsaSubgroupBytes {
|
|
return nil, false
|
|
}
|
|
r := new(big.Int).SetBytes(sig[:dsaSubgroupBytes])
|
|
s := new(big.Int).SetBytes(sig[dsaSubgroupBytes:])
|
|
ok := dsa.Verify(&pk.PublicKey, hashed, r, s)
|
|
return sig[dsaSubgroupBytes*2:], ok
|
|
}
|
|
|
|
type PrivateKey struct {
|
|
PublicKey
|
|
dsa.PrivateKey
|
|
}
|
|
|
|
func (priv *PrivateKey) Sign(rand io.Reader, hashed []byte) []byte {
|
|
r, s, err := dsa.Sign(rand, &priv.PrivateKey, hashed)
|
|
if err != nil {
|
|
panic(err.Error())
|
|
}
|
|
rBytes := r.Bytes()
|
|
sBytes := s.Bytes()
|
|
if len(rBytes) > dsaSubgroupBytes || len(sBytes) > dsaSubgroupBytes {
|
|
panic("DSA signature too large")
|
|
}
|
|
|
|
out := make([]byte, 2*dsaSubgroupBytes)
|
|
copy(out[dsaSubgroupBytes-len(rBytes):], rBytes)
|
|
copy(out[len(out)-len(sBytes):], sBytes)
|
|
return out
|
|
}
|
|
|
|
func (priv *PrivateKey) Serialize(in []byte) []byte {
|
|
in = priv.PublicKey.Serialize(in)
|
|
in = appendMPI(in, priv.PrivateKey.X)
|
|
return in
|
|
}
|
|
|
|
func (priv *PrivateKey) Parse(in []byte) ([]byte, bool) {
|
|
in, ok := priv.PublicKey.Parse(in)
|
|
if !ok {
|
|
return in, ok
|
|
}
|
|
priv.PrivateKey.PublicKey = priv.PublicKey.PublicKey
|
|
priv.PrivateKey.X, in, ok = getMPI(in)
|
|
return in, ok
|
|
}
|
|
|
|
func (priv *PrivateKey) Generate(rand io.Reader) {
|
|
if err := dsa.GenerateParameters(&priv.PrivateKey.PublicKey.Parameters, rand, dsa.L1024N160); err != nil {
|
|
panic(err.Error())
|
|
}
|
|
if err := dsa.GenerateKey(&priv.PrivateKey, rand); err != nil {
|
|
panic(err.Error())
|
|
}
|
|
priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
|
|
}
|
|
|
|
func notHex(r rune) bool {
|
|
if r >= '0' && r <= '9' ||
|
|
r >= 'a' && r <= 'f' ||
|
|
r >= 'A' && r <= 'F' {
|
|
return false
|
|
}
|
|
|
|
return true
|
|
}
|
|
|
|
// Import parses the contents of a libotr private key file.
|
|
func (priv *PrivateKey) Import(in []byte) bool {
|
|
mpiStart := []byte(" #")
|
|
|
|
mpis := make([]*big.Int, 5)
|
|
|
|
for i := 0; i < len(mpis); i++ {
|
|
start := bytes.Index(in, mpiStart)
|
|
if start == -1 {
|
|
return false
|
|
}
|
|
in = in[start+len(mpiStart):]
|
|
end := bytes.IndexFunc(in, notHex)
|
|
if end == -1 {
|
|
return false
|
|
}
|
|
hexBytes := in[:end]
|
|
in = in[end:]
|
|
|
|
if len(hexBytes)&1 != 0 {
|
|
return false
|
|
}
|
|
|
|
mpiBytes := make([]byte, len(hexBytes)/2)
|
|
if _, err := hex.Decode(mpiBytes, hexBytes); err != nil {
|
|
return false
|
|
}
|
|
|
|
mpis[i] = new(big.Int).SetBytes(mpiBytes)
|
|
}
|
|
|
|
for _, mpi := range mpis {
|
|
if mpi.Sign() <= 0 {
|
|
return false
|
|
}
|
|
}
|
|
|
|
priv.PrivateKey.P = mpis[0]
|
|
priv.PrivateKey.Q = mpis[1]
|
|
priv.PrivateKey.G = mpis[2]
|
|
priv.PrivateKey.Y = mpis[3]
|
|
priv.PrivateKey.X = mpis[4]
|
|
priv.PublicKey.PublicKey = priv.PrivateKey.PublicKey
|
|
|
|
a := new(big.Int).Exp(priv.PrivateKey.G, priv.PrivateKey.X, priv.PrivateKey.P)
|
|
return a.Cmp(priv.PrivateKey.Y) == 0
|
|
}
|
|
|
|
func getU8(in []byte) (uint8, []byte, bool) {
|
|
if len(in) < 1 {
|
|
return 0, in, false
|
|
}
|
|
return in[0], in[1:], true
|
|
}
|
|
|
|
func getU16(in []byte) (uint16, []byte, bool) {
|
|
if len(in) < 2 {
|
|
return 0, in, false
|
|
}
|
|
r := uint16(in[0])<<8 | uint16(in[1])
|
|
return r, in[2:], true
|
|
}
|
|
|
|
func getU32(in []byte) (uint32, []byte, bool) {
|
|
if len(in) < 4 {
|
|
return 0, in, false
|
|
}
|
|
r := uint32(in[0])<<24 | uint32(in[1])<<16 | uint32(in[2])<<8 | uint32(in[3])
|
|
return r, in[4:], true
|
|
}
|
|
|
|
func getMPI(in []byte) (*big.Int, []byte, bool) {
|
|
l, in, ok := getU32(in)
|
|
if !ok || uint32(len(in)) < l {
|
|
return nil, in, false
|
|
}
|
|
r := new(big.Int).SetBytes(in[:l])
|
|
return r, in[l:], true
|
|
}
|
|
|
|
func getData(in []byte) ([]byte, []byte, bool) {
|
|
l, in, ok := getU32(in)
|
|
if !ok || uint32(len(in)) < l {
|
|
return nil, in, false
|
|
}
|
|
return in[:l], in[l:], true
|
|
}
|
|
|
|
func getNBytes(in []byte, n int) ([]byte, []byte, bool) {
|
|
if len(in) < n {
|
|
return nil, in, false
|
|
}
|
|
return in[:n], in[n:], true
|
|
}
|
|
|
|
func appendU16(out []byte, v uint16) []byte {
|
|
out = append(out, byte(v>>8), byte(v))
|
|
return out
|
|
}
|
|
|
|
func appendU32(out []byte, v uint32) []byte {
|
|
out = append(out, byte(v>>24), byte(v>>16), byte(v>>8), byte(v))
|
|
return out
|
|
}
|
|
|
|
func appendData(out, v []byte) []byte {
|
|
out = appendU32(out, uint32(len(v)))
|
|
out = append(out, v...)
|
|
return out
|
|
}
|
|
|
|
func appendMPI(out []byte, v *big.Int) []byte {
|
|
vBytes := v.Bytes()
|
|
out = appendU32(out, uint32(len(vBytes)))
|
|
out = append(out, vBytes...)
|
|
return out
|
|
}
|
|
|
|
func appendMPIs(out []byte, mpis ...*big.Int) []byte {
|
|
for _, mpi := range mpis {
|
|
out = appendMPI(out, mpi)
|
|
}
|
|
return out
|
|
}
|
|
|
|
func zero(b []byte) {
|
|
for i := range b {
|
|
b[i] = 0
|
|
}
|
|
}
|