1
0
Fork 0
mirror of https://github.com/Luzifer/nginx-sso.git synced 2024-12-21 05:11:17 +00:00
nginx-sso/vendor/google.golang.org/grpc/benchmark/latency/latency.go
Knut Ahlers 9b3c895c04
Update dependencies
Signed-off-by: Knut Ahlers <knut@ahlers.me>
2019-04-22 06:44:07 +02:00

315 lines
9.3 KiB
Go

/*
*
* Copyright 2017 gRPC authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* you may not use this file except in compliance with the License.
* You may obtain a copy of the License at
*
* http://www.apache.org/licenses/LICENSE-2.0
*
* Unless required by applicable law or agreed to in writing, software
* distributed under the License is distributed on an "AS IS" BASIS,
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
* See the License for the specific language governing permissions and
* limitations under the License.
*
*/
// Package latency provides wrappers for net.Conn, net.Listener, and
// net.Dialers, designed to interoperate to inject real-world latency into
// network connections.
package latency
import (
"bytes"
"context"
"encoding/binary"
"fmt"
"io"
"net"
"time"
)
// Dialer is a function matching the signature of net.Dial.
type Dialer func(network, address string) (net.Conn, error)
// TimeoutDialer is a function matching the signature of net.DialTimeout.
type TimeoutDialer func(network, address string, timeout time.Duration) (net.Conn, error)
// ContextDialer is a function matching the signature of
// net.Dialer.DialContext.
type ContextDialer func(ctx context.Context, network, address string) (net.Conn, error)
// Network represents a network with the given bandwidth, latency, and MTU
// (Maximum Transmission Unit) configuration, and can produce wrappers of
// net.Listeners, net.Conn, and various forms of dialing functions. The
// Listeners and Dialers/Conns on both sides of connections must come from this
// package, but need not be created from the same Network. Latency is computed
// when sending (in Write), and is injected when receiving (in Read). This
// allows senders' Write calls to be non-blocking, as in real-world
// applications.
//
// Note: Latency is injected by the sender specifying the absolute time data
// should be available, and the reader delaying until that time arrives to
// provide the data. This package attempts to counter-act the effects of clock
// drift and existing network latency by measuring the delay between the
// sender's transmission time and the receiver's reception time during startup.
// No attempt is made to measure the existing bandwidth of the connection.
type Network struct {
Kbps int // Kilobits per second; if non-positive, infinite
Latency time.Duration // One-way latency (sending); if non-positive, no delay
MTU int // Bytes per packet; if non-positive, infinite
}
var (
//Local simulates local network.
Local = Network{0, 0, 0}
//LAN simulates local area network network.
LAN = Network{100 * 1024, 2 * time.Millisecond, 1500}
//WAN simulates wide area network.
WAN = Network{20 * 1024, 30 * time.Millisecond, 1500}
//Longhaul simulates bad network.
Longhaul = Network{1000 * 1024, 200 * time.Millisecond, 9000}
)
// Conn returns a net.Conn that wraps c and injects n's latency into that
// connection. This function also imposes latency for connection creation.
// If n's Latency is lower than the measured latency in c, an error is
// returned.
func (n *Network) Conn(c net.Conn) (net.Conn, error) {
start := now()
nc := &conn{Conn: c, network: n, readBuf: new(bytes.Buffer)}
if err := nc.sync(); err != nil {
return nil, err
}
sleep(start.Add(nc.delay).Sub(now()))
return nc, nil
}
type conn struct {
net.Conn
network *Network
readBuf *bytes.Buffer // one packet worth of data received
lastSendEnd time.Time // time the previous Write should be fully on the wire
delay time.Duration // desired latency - measured latency
}
// header is sent before all data transmitted by the application.
type header struct {
ReadTime int64 // Time the reader is allowed to read this packet (UnixNano)
Sz int32 // Size of the data in the packet
}
func (c *conn) Write(p []byte) (n int, err error) {
tNow := now()
if c.lastSendEnd.Before(tNow) {
c.lastSendEnd = tNow
}
for len(p) > 0 {
pkt := p
if c.network.MTU > 0 && len(pkt) > c.network.MTU {
pkt = pkt[:c.network.MTU]
p = p[c.network.MTU:]
} else {
p = nil
}
if c.network.Kbps > 0 {
if congestion := c.lastSendEnd.Sub(tNow) - c.delay; congestion > 0 {
// The network is full; sleep until this packet can be sent.
sleep(congestion)
tNow = tNow.Add(congestion)
}
}
c.lastSendEnd = c.lastSendEnd.Add(c.network.pktTime(len(pkt)))
hdr := header{ReadTime: c.lastSendEnd.Add(c.delay).UnixNano(), Sz: int32(len(pkt))}
if err := binary.Write(c.Conn, binary.BigEndian, hdr); err != nil {
return n, err
}
x, err := c.Conn.Write(pkt)
n += x
if err != nil {
return n, err
}
}
return n, nil
}
func (c *conn) Read(p []byte) (n int, err error) {
if c.readBuf.Len() == 0 {
var hdr header
if err := binary.Read(c.Conn, binary.BigEndian, &hdr); err != nil {
return 0, err
}
defer func() { sleep(time.Unix(0, hdr.ReadTime).Sub(now())) }()
if _, err := io.CopyN(c.readBuf, c.Conn, int64(hdr.Sz)); err != nil {
return 0, err
}
}
// Read from readBuf.
return c.readBuf.Read(p)
}
// sync does a handshake and then measures the latency on the network in
// coordination with the other side.
func (c *conn) sync() error {
const (
pingMsg = "syncPing"
warmup = 10 // minimum number of iterations to measure latency
giveUp = 50 // maximum number of iterations to measure latency
accuracy = time.Millisecond // req'd accuracy to stop early
goodRun = 3 // stop early if latency within accuracy this many times
)
type syncMsg struct {
SendT int64 // Time sent. If zero, stop.
RecvT int64 // Time received. If zero, fill in and respond.
}
// A trivial handshake
if err := binary.Write(c.Conn, binary.BigEndian, []byte(pingMsg)); err != nil {
return err
}
var ping [8]byte
if err := binary.Read(c.Conn, binary.BigEndian, &ping); err != nil {
return err
} else if string(ping[:]) != pingMsg {
return fmt.Errorf("malformed handshake message: %v (want %q)", ping, pingMsg)
}
// Both sides are alive and syncing. Calculate network delay / clock skew.
att := 0
good := 0
var latency time.Duration
localDone, remoteDone := false, false
send := true
for !localDone || !remoteDone {
if send {
if err := binary.Write(c.Conn, binary.BigEndian, syncMsg{SendT: now().UnixNano()}); err != nil {
return err
}
att++
send = false
}
// Block until we get a syncMsg
m := syncMsg{}
if err := binary.Read(c.Conn, binary.BigEndian, &m); err != nil {
return err
}
if m.RecvT == 0 {
// Message initiated from other side.
if m.SendT == 0 {
remoteDone = true
continue
}
// Send response.
m.RecvT = now().UnixNano()
if err := binary.Write(c.Conn, binary.BigEndian, m); err != nil {
return err
}
continue
}
lag := time.Duration(m.RecvT - m.SendT)
latency += lag
avgLatency := latency / time.Duration(att)
if e := lag - avgLatency; e > -accuracy && e < accuracy {
good++
} else {
good = 0
}
if att < giveUp && (att < warmup || good < goodRun) {
send = true
continue
}
localDone = true
latency = avgLatency
// Tell the other side we're done.
if err := binary.Write(c.Conn, binary.BigEndian, syncMsg{}); err != nil {
return err
}
}
if c.network.Latency <= 0 {
return nil
}
c.delay = c.network.Latency - latency
if c.delay < 0 {
return fmt.Errorf("measured network latency (%v) higher than desired latency (%v)", latency, c.network.Latency)
}
return nil
}
// Listener returns a net.Listener that wraps l and injects n's latency in its
// connections.
func (n *Network) Listener(l net.Listener) net.Listener {
return &listener{Listener: l, network: n}
}
type listener struct {
net.Listener
network *Network
}
func (l *listener) Accept() (net.Conn, error) {
c, err := l.Listener.Accept()
if err != nil {
return nil, err
}
return l.network.Conn(c)
}
// Dialer returns a Dialer that wraps d and injects n's latency in its
// connections. n's Latency is also injected to the connection's creation.
func (n *Network) Dialer(d Dialer) Dialer {
return func(network, address string) (net.Conn, error) {
conn, err := d(network, address)
if err != nil {
return nil, err
}
return n.Conn(conn)
}
}
// TimeoutDialer returns a TimeoutDialer that wraps d and injects n's latency
// in its connections. n's Latency is also injected to the connection's
// creation.
func (n *Network) TimeoutDialer(d TimeoutDialer) TimeoutDialer {
return func(network, address string, timeout time.Duration) (net.Conn, error) {
conn, err := d(network, address, timeout)
if err != nil {
return nil, err
}
return n.Conn(conn)
}
}
// ContextDialer returns a ContextDialer that wraps d and injects n's latency
// in its connections. n's Latency is also injected to the connection's
// creation.
func (n *Network) ContextDialer(d ContextDialer) ContextDialer {
return func(ctx context.Context, network, address string) (net.Conn, error) {
conn, err := d(ctx, network, address)
if err != nil {
return nil, err
}
return n.Conn(conn)
}
}
// pktTime returns the time it takes to transmit one packet of data of size b
// in bytes.
func (n *Network) pktTime(b int) time.Duration {
if n.Kbps <= 0 {
return time.Duration(0)
}
return time.Duration(b) * time.Second / time.Duration(n.Kbps*(1024/8))
}
// Wrappers for testing
var now = time.Now
var sleep = time.Sleep