mirror of
https://github.com/Luzifer/nginx-sso.git
synced 2024-12-30 01:31:18 +00:00
137 lines
4.1 KiB
Go
137 lines
4.1 KiB
Go
// Copyright 2014 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package main
|
|
|
|
import (
|
|
"fmt"
|
|
"log"
|
|
"net/http"
|
|
"os"
|
|
"path/filepath"
|
|
"strings"
|
|
|
|
"google.golang.org/api/googleapi"
|
|
prediction "google.golang.org/api/prediction/v1.6"
|
|
)
|
|
|
|
func init() {
|
|
scopes := []string{
|
|
prediction.DevstorageFullControlScope,
|
|
prediction.DevstorageReadOnlyScope,
|
|
prediction.DevstorageReadWriteScope,
|
|
prediction.PredictionScope,
|
|
}
|
|
registerDemo("prediction", strings.Join(scopes, " "), predictionMain)
|
|
}
|
|
|
|
type predictionType struct {
|
|
api *prediction.Service
|
|
projectNumber string
|
|
bucketName string
|
|
trainingFileName string
|
|
modelName string
|
|
}
|
|
|
|
// This example demonstrates calling the Prediction API.
|
|
// Training data is uploaded to a pre-created Google Cloud Storage Bucket and
|
|
// then the Prediction API is called to train a model based on that data.
|
|
// After a few minutes, the model should be completely trained and ready
|
|
// for prediction. At that point, text is sent to the model and the Prediction
|
|
// API attempts to classify the data, and the results are printed out.
|
|
//
|
|
// To get started, follow the instructions found in the "Hello Prediction!"
|
|
// Getting Started Guide located here:
|
|
// https://developers.google.com/prediction/docs/hello_world
|
|
//
|
|
// Example usage:
|
|
// go-api-demo -clientid="my-clientid" -secret="my-secret" prediction
|
|
// my-project-number my-bucket-name my-training-filename my-model-name
|
|
//
|
|
// Example output:
|
|
// Predict result: language=Spanish
|
|
// English Score: 0.000000
|
|
// French Score: 0.000000
|
|
// Spanish Score: 1.000000
|
|
// analyze: output feature text=&{157 English}
|
|
// analyze: output feature text=&{149 French}
|
|
// analyze: output feature text=&{100 Spanish}
|
|
// feature text count=406
|
|
func predictionMain(client *http.Client, argv []string) {
|
|
if len(argv) != 4 {
|
|
fmt.Fprintln(os.Stderr,
|
|
"Usage: prediction project_number bucket training_data model_name")
|
|
return
|
|
}
|
|
|
|
api, err := prediction.New(client)
|
|
if err != nil {
|
|
log.Fatalf("unable to create prediction API client: %v", err)
|
|
}
|
|
|
|
t := &predictionType{
|
|
api: api,
|
|
projectNumber: argv[0],
|
|
bucketName: argv[1],
|
|
trainingFileName: argv[2],
|
|
modelName: argv[3],
|
|
}
|
|
|
|
t.trainModel()
|
|
t.predictModel()
|
|
}
|
|
|
|
func (t *predictionType) trainModel() {
|
|
// First, check to see if our trained model already exists.
|
|
res, err := t.api.Trainedmodels.Get(t.projectNumber, t.modelName).Do()
|
|
if err != nil {
|
|
if ae, ok := err.(*googleapi.Error); ok && ae.Code != http.StatusNotFound {
|
|
log.Fatalf("error getting trained model: %v", err)
|
|
}
|
|
log.Printf("Training model not found, creating new model.")
|
|
res, err = t.api.Trainedmodels.Insert(t.projectNumber, &prediction.Insert{
|
|
Id: t.modelName,
|
|
StorageDataLocation: filepath.Join(t.bucketName, t.trainingFileName),
|
|
}).Do()
|
|
if err != nil {
|
|
log.Fatalf("unable to create trained model: %v", err)
|
|
}
|
|
}
|
|
if res.TrainingStatus != "DONE" {
|
|
// Wait for the trained model to finish training.
|
|
fmt.Printf("Training model. Please wait and re-run program after a few minutes.")
|
|
os.Exit(0)
|
|
}
|
|
}
|
|
|
|
func (t *predictionType) predictModel() {
|
|
// Model has now been trained. Predict with it.
|
|
input := &prediction.Input{
|
|
Input: &prediction.InputInput{
|
|
CsvInstance: []interface{}{
|
|
"Hola, con quien hablo",
|
|
},
|
|
},
|
|
}
|
|
res, err := t.api.Trainedmodels.Predict(t.projectNumber, t.modelName, input).Do()
|
|
if err != nil {
|
|
log.Fatalf("unable to get trained prediction: %v", err)
|
|
}
|
|
fmt.Printf("Predict result: language=%v\n", res.OutputLabel)
|
|
for _, m := range res.OutputMulti {
|
|
fmt.Printf("%v Score: %v\n", m.Label, m.Score)
|
|
}
|
|
|
|
// Now analyze the model.
|
|
an, err := t.api.Trainedmodels.Analyze(t.projectNumber, t.modelName).Do()
|
|
if err != nil {
|
|
log.Fatalf("unable to analyze trained model: %v", err)
|
|
}
|
|
for _, f := range an.DataDescription.OutputFeature.Text {
|
|
fmt.Printf("analyze: output feature text=%v\n", f)
|
|
}
|
|
for _, f := range an.DataDescription.Features {
|
|
fmt.Printf("feature text count=%v\n", f.Text.Count)
|
|
}
|
|
}
|