mirror of
https://github.com/Luzifer/nginx-sso.git
synced 2025-01-02 03:01:16 +00:00
220 lines
3.7 KiB
Go
220 lines
3.7 KiB
Go
|
// Copyright 2012 The Go Authors. All rights reserved.
|
||
|
// Use of this source code is governed by a BSD-style
|
||
|
// license that can be found in the LICENSE file.
|
||
|
|
||
|
package bn256
|
||
|
|
||
|
// For details of the algorithms used, see "Multiplication and Squaring on
|
||
|
// Pairing-Friendly Fields, Devegili et al.
|
||
|
// http://eprint.iacr.org/2006/471.pdf.
|
||
|
|
||
|
import (
|
||
|
"math/big"
|
||
|
)
|
||
|
|
||
|
// gfP2 implements a field of size p² as a quadratic extension of the base
|
||
|
// field where i²=-1.
|
||
|
type gfP2 struct {
|
||
|
x, y *big.Int // value is xi+y.
|
||
|
}
|
||
|
|
||
|
func newGFp2(pool *bnPool) *gfP2 {
|
||
|
return &gfP2{pool.Get(), pool.Get()}
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) String() string {
|
||
|
x := new(big.Int).Mod(e.x, p)
|
||
|
y := new(big.Int).Mod(e.y, p)
|
||
|
return "(" + x.String() + "," + y.String() + ")"
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Put(pool *bnPool) {
|
||
|
pool.Put(e.x)
|
||
|
pool.Put(e.y)
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Set(a *gfP2) *gfP2 {
|
||
|
e.x.Set(a.x)
|
||
|
e.y.Set(a.y)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) SetZero() *gfP2 {
|
||
|
e.x.SetInt64(0)
|
||
|
e.y.SetInt64(0)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) SetOne() *gfP2 {
|
||
|
e.x.SetInt64(0)
|
||
|
e.y.SetInt64(1)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Minimal() {
|
||
|
if e.x.Sign() < 0 || e.x.Cmp(p) >= 0 {
|
||
|
e.x.Mod(e.x, p)
|
||
|
}
|
||
|
if e.y.Sign() < 0 || e.y.Cmp(p) >= 0 {
|
||
|
e.y.Mod(e.y, p)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) IsZero() bool {
|
||
|
return e.x.Sign() == 0 && e.y.Sign() == 0
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) IsOne() bool {
|
||
|
if e.x.Sign() != 0 {
|
||
|
return false
|
||
|
}
|
||
|
words := e.y.Bits()
|
||
|
return len(words) == 1 && words[0] == 1
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Conjugate(a *gfP2) *gfP2 {
|
||
|
e.y.Set(a.y)
|
||
|
e.x.Neg(a.x)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Negative(a *gfP2) *gfP2 {
|
||
|
e.x.Neg(a.x)
|
||
|
e.y.Neg(a.y)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Add(a, b *gfP2) *gfP2 {
|
||
|
e.x.Add(a.x, b.x)
|
||
|
e.y.Add(a.y, b.y)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Sub(a, b *gfP2) *gfP2 {
|
||
|
e.x.Sub(a.x, b.x)
|
||
|
e.y.Sub(a.y, b.y)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Double(a *gfP2) *gfP2 {
|
||
|
e.x.Lsh(a.x, 1)
|
||
|
e.y.Lsh(a.y, 1)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (c *gfP2) Exp(a *gfP2, power *big.Int, pool *bnPool) *gfP2 {
|
||
|
sum := newGFp2(pool)
|
||
|
sum.SetOne()
|
||
|
t := newGFp2(pool)
|
||
|
|
||
|
for i := power.BitLen() - 1; i >= 0; i-- {
|
||
|
t.Square(sum, pool)
|
||
|
if power.Bit(i) != 0 {
|
||
|
sum.Mul(t, a, pool)
|
||
|
} else {
|
||
|
sum.Set(t)
|
||
|
}
|
||
|
}
|
||
|
|
||
|
c.Set(sum)
|
||
|
|
||
|
sum.Put(pool)
|
||
|
t.Put(pool)
|
||
|
|
||
|
return c
|
||
|
}
|
||
|
|
||
|
// See "Multiplication and Squaring in Pairing-Friendly Fields",
|
||
|
// http://eprint.iacr.org/2006/471.pdf
|
||
|
func (e *gfP2) Mul(a, b *gfP2, pool *bnPool) *gfP2 {
|
||
|
tx := pool.Get().Mul(a.x, b.y)
|
||
|
t := pool.Get().Mul(b.x, a.y)
|
||
|
tx.Add(tx, t)
|
||
|
tx.Mod(tx, p)
|
||
|
|
||
|
ty := pool.Get().Mul(a.y, b.y)
|
||
|
t.Mul(a.x, b.x)
|
||
|
ty.Sub(ty, t)
|
||
|
e.y.Mod(ty, p)
|
||
|
e.x.Set(tx)
|
||
|
|
||
|
pool.Put(tx)
|
||
|
pool.Put(ty)
|
||
|
pool.Put(t)
|
||
|
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) MulScalar(a *gfP2, b *big.Int) *gfP2 {
|
||
|
e.x.Mul(a.x, b)
|
||
|
e.y.Mul(a.y, b)
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
// MulXi sets e=ξa where ξ=i+3 and then returns e.
|
||
|
func (e *gfP2) MulXi(a *gfP2, pool *bnPool) *gfP2 {
|
||
|
// (xi+y)(i+3) = (3x+y)i+(3y-x)
|
||
|
tx := pool.Get().Lsh(a.x, 1)
|
||
|
tx.Add(tx, a.x)
|
||
|
tx.Add(tx, a.y)
|
||
|
|
||
|
ty := pool.Get().Lsh(a.y, 1)
|
||
|
ty.Add(ty, a.y)
|
||
|
ty.Sub(ty, a.x)
|
||
|
|
||
|
e.x.Set(tx)
|
||
|
e.y.Set(ty)
|
||
|
|
||
|
pool.Put(tx)
|
||
|
pool.Put(ty)
|
||
|
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Square(a *gfP2, pool *bnPool) *gfP2 {
|
||
|
// Complex squaring algorithm:
|
||
|
// (xi+b)² = (x+y)(y-x) + 2*i*x*y
|
||
|
t1 := pool.Get().Sub(a.y, a.x)
|
||
|
t2 := pool.Get().Add(a.x, a.y)
|
||
|
ty := pool.Get().Mul(t1, t2)
|
||
|
ty.Mod(ty, p)
|
||
|
|
||
|
t1.Mul(a.x, a.y)
|
||
|
t1.Lsh(t1, 1)
|
||
|
|
||
|
e.x.Mod(t1, p)
|
||
|
e.y.Set(ty)
|
||
|
|
||
|
pool.Put(t1)
|
||
|
pool.Put(t2)
|
||
|
pool.Put(ty)
|
||
|
|
||
|
return e
|
||
|
}
|
||
|
|
||
|
func (e *gfP2) Invert(a *gfP2, pool *bnPool) *gfP2 {
|
||
|
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
||
|
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
||
|
t := pool.Get()
|
||
|
t.Mul(a.y, a.y)
|
||
|
t2 := pool.Get()
|
||
|
t2.Mul(a.x, a.x)
|
||
|
t.Add(t, t2)
|
||
|
|
||
|
inv := pool.Get()
|
||
|
inv.ModInverse(t, p)
|
||
|
|
||
|
e.x.Neg(a.x)
|
||
|
e.x.Mul(e.x, inv)
|
||
|
e.x.Mod(e.x, p)
|
||
|
|
||
|
e.y.Mul(a.y, inv)
|
||
|
e.y.Mod(e.y, p)
|
||
|
|
||
|
pool.Put(t)
|
||
|
pool.Put(t2)
|
||
|
pool.Put(inv)
|
||
|
|
||
|
return e
|
||
|
}
|