1
0
Fork 0
mirror of https://github.com/Luzifer/nginx-sso.git synced 2024-12-30 01:31:18 +00:00
nginx-sso/vendor/cloud.google.com/go/datastore/query.go

787 lines
22 KiB
Go
Raw Normal View History

// Copyright 2014 Google LLC
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
package datastore
import (
"context"
"encoding/base64"
"errors"
"fmt"
"math"
"reflect"
"strconv"
"strings"
"cloud.google.com/go/internal/trace"
wrapperspb "github.com/golang/protobuf/ptypes/wrappers"
"google.golang.org/api/iterator"
pb "google.golang.org/genproto/googleapis/datastore/v1"
)
type operator int
const (
lessThan operator = iota + 1
lessEq
equal
greaterEq
greaterThan
keyFieldName = "__key__"
)
var operatorToProto = map[operator]pb.PropertyFilter_Operator{
lessThan: pb.PropertyFilter_LESS_THAN,
lessEq: pb.PropertyFilter_LESS_THAN_OR_EQUAL,
equal: pb.PropertyFilter_EQUAL,
greaterEq: pb.PropertyFilter_GREATER_THAN_OR_EQUAL,
greaterThan: pb.PropertyFilter_GREATER_THAN,
}
// filter is a conditional filter on query results.
type filter struct {
FieldName string
Op operator
Value interface{}
}
type sortDirection bool
const (
ascending sortDirection = false
descending sortDirection = true
)
var sortDirectionToProto = map[sortDirection]pb.PropertyOrder_Direction{
ascending: pb.PropertyOrder_ASCENDING,
descending: pb.PropertyOrder_DESCENDING,
}
// order is a sort order on query results.
type order struct {
FieldName string
Direction sortDirection
}
// NewQuery creates a new Query for a specific entity kind.
//
// An empty kind means to return all entities, including entities created and
// managed by other App Engine features, and is called a kindless query.
// Kindless queries cannot include filters or sort orders on property values.
func NewQuery(kind string) *Query {
return &Query{
kind: kind,
limit: -1,
}
}
// Query represents a datastore query.
type Query struct {
kind string
ancestor *Key
filter []filter
order []order
projection []string
distinct bool
distinctOn []string
keysOnly bool
eventual bool
limit int32
offset int32
start []byte
end []byte
namespace string
trans *Transaction
err error
}
func (q *Query) clone() *Query {
x := *q
// Copy the contents of the slice-typed fields to a new backing store.
if len(q.filter) > 0 {
x.filter = make([]filter, len(q.filter))
copy(x.filter, q.filter)
}
if len(q.order) > 0 {
x.order = make([]order, len(q.order))
copy(x.order, q.order)
}
return &x
}
// Ancestor returns a derivative query with an ancestor filter.
// The ancestor should not be nil.
func (q *Query) Ancestor(ancestor *Key) *Query {
q = q.clone()
if ancestor == nil {
q.err = errors.New("datastore: nil query ancestor")
return q
}
q.ancestor = ancestor
return q
}
// EventualConsistency returns a derivative query that returns eventually
// consistent results.
// It only has an effect on ancestor queries.
func (q *Query) EventualConsistency() *Query {
q = q.clone()
q.eventual = true
return q
}
// Namespace returns a derivative query that is associated with the given
// namespace.
//
// A namespace may be used to partition data for multi-tenant applications.
// For details, see https://cloud.google.com/datastore/docs/concepts/multitenancy.
func (q *Query) Namespace(ns string) *Query {
q = q.clone()
q.namespace = ns
return q
}
// Transaction returns a derivative query that is associated with the given
// transaction.
//
// All reads performed as part of the transaction will come from a single
// consistent snapshot. Furthermore, if the transaction is set to a
// serializable isolation level, another transaction cannot concurrently modify
// the data that is read or modified by this transaction.
func (q *Query) Transaction(t *Transaction) *Query {
q = q.clone()
q.trans = t
return q
}
// Filter returns a derivative query with a field-based filter.
// The filterStr argument must be a field name followed by optional space,
// followed by an operator, one of ">", "<", ">=", "<=", or "=".
// Fields are compared against the provided value using the operator.
// Multiple filters are AND'ed together.
// Field names which contain spaces, quote marks, or operator characters
// should be passed as quoted Go string literals as returned by strconv.Quote
// or the fmt package's %q verb.
func (q *Query) Filter(filterStr string, value interface{}) *Query {
q = q.clone()
filterStr = strings.TrimSpace(filterStr)
if filterStr == "" {
q.err = fmt.Errorf("datastore: invalid filter %q", filterStr)
return q
}
f := filter{
FieldName: strings.TrimRight(filterStr, " ><=!"),
Value: value,
}
switch op := strings.TrimSpace(filterStr[len(f.FieldName):]); op {
case "<=":
f.Op = lessEq
case ">=":
f.Op = greaterEq
case "<":
f.Op = lessThan
case ">":
f.Op = greaterThan
case "=":
f.Op = equal
default:
q.err = fmt.Errorf("datastore: invalid operator %q in filter %q", op, filterStr)
return q
}
var err error
f.FieldName, err = unquote(f.FieldName)
if err != nil {
q.err = fmt.Errorf("datastore: invalid syntax for quoted field name %q", f.FieldName)
return q
}
q.filter = append(q.filter, f)
return q
}
// Order returns a derivative query with a field-based sort order. Orders are
// applied in the order they are added. The default order is ascending; to sort
// in descending order prefix the fieldName with a minus sign (-).
// Field names which contain spaces, quote marks, or the minus sign
// should be passed as quoted Go string literals as returned by strconv.Quote
// or the fmt package's %q verb.
func (q *Query) Order(fieldName string) *Query {
q = q.clone()
fieldName, dir := strings.TrimSpace(fieldName), ascending
if strings.HasPrefix(fieldName, "-") {
fieldName, dir = strings.TrimSpace(fieldName[1:]), descending
} else if strings.HasPrefix(fieldName, "+") {
q.err = fmt.Errorf("datastore: invalid order: %q", fieldName)
return q
}
fieldName, err := unquote(fieldName)
if err != nil {
q.err = fmt.Errorf("datastore: invalid syntax for quoted field name %q", fieldName)
return q
}
if fieldName == "" {
q.err = errors.New("datastore: empty order")
return q
}
q.order = append(q.order, order{
Direction: dir,
FieldName: fieldName,
})
return q
}
// unquote optionally interprets s as a double-quoted or backquoted Go
// string literal if it begins with the relevant character.
func unquote(s string) (string, error) {
if s == "" || (s[0] != '`' && s[0] != '"') {
return s, nil
}
return strconv.Unquote(s)
}
// Project returns a derivative query that yields only the given fields. It
// cannot be used with KeysOnly.
func (q *Query) Project(fieldNames ...string) *Query {
q = q.clone()
q.projection = append([]string(nil), fieldNames...)
return q
}
// Distinct returns a derivative query that yields de-duplicated entities with
// respect to the set of projected fields. It is only used for projection
// queries. Distinct cannot be used with DistinctOn.
func (q *Query) Distinct() *Query {
q = q.clone()
q.distinct = true
return q
}
// DistinctOn returns a derivative query that yields de-duplicated entities with
// respect to the set of the specified fields. It is only used for projection
// queries. The field list should be a subset of the projected field list.
// DistinctOn cannot be used with Distinct.
func (q *Query) DistinctOn(fieldNames ...string) *Query {
q = q.clone()
q.distinctOn = fieldNames
return q
}
// KeysOnly returns a derivative query that yields only keys, not keys and
// entities. It cannot be used with projection queries.
func (q *Query) KeysOnly() *Query {
q = q.clone()
q.keysOnly = true
return q
}
// Limit returns a derivative query that has a limit on the number of results
// returned. A negative value means unlimited.
func (q *Query) Limit(limit int) *Query {
q = q.clone()
if limit < math.MinInt32 || limit > math.MaxInt32 {
q.err = errors.New("datastore: query limit overflow")
return q
}
q.limit = int32(limit)
return q
}
// Offset returns a derivative query that has an offset of how many keys to
// skip over before returning results. A negative value is invalid.
func (q *Query) Offset(offset int) *Query {
q = q.clone()
if offset < 0 {
q.err = errors.New("datastore: negative query offset")
return q
}
if offset > math.MaxInt32 {
q.err = errors.New("datastore: query offset overflow")
return q
}
q.offset = int32(offset)
return q
}
// Start returns a derivative query with the given start point.
func (q *Query) Start(c Cursor) *Query {
q = q.clone()
q.start = c.cc
return q
}
// End returns a derivative query with the given end point.
func (q *Query) End(c Cursor) *Query {
q = q.clone()
q.end = c.cc
return q
}
// toProto converts the query to a protocol buffer.
func (q *Query) toProto(req *pb.RunQueryRequest) error {
if len(q.projection) != 0 && q.keysOnly {
return errors.New("datastore: query cannot both project and be keys-only")
}
if len(q.distinctOn) != 0 && q.distinct {
return errors.New("datastore: query cannot be both distinct and distinct-on")
}
dst := &pb.Query{}
if q.kind != "" {
dst.Kind = []*pb.KindExpression{{Name: q.kind}}
}
if q.projection != nil {
for _, propertyName := range q.projection {
dst.Projection = append(dst.Projection, &pb.Projection{Property: &pb.PropertyReference{Name: propertyName}})
}
for _, propertyName := range q.distinctOn {
dst.DistinctOn = append(dst.DistinctOn, &pb.PropertyReference{Name: propertyName})
}
if q.distinct {
for _, propertyName := range q.projection {
dst.DistinctOn = append(dst.DistinctOn, &pb.PropertyReference{Name: propertyName})
}
}
}
if q.keysOnly {
dst.Projection = []*pb.Projection{{Property: &pb.PropertyReference{Name: keyFieldName}}}
}
var filters []*pb.Filter
for _, qf := range q.filter {
if qf.FieldName == "" {
return errors.New("datastore: empty query filter field name")
}
v, err := interfaceToProto(reflect.ValueOf(qf.Value).Interface(), false)
if err != nil {
return fmt.Errorf("datastore: bad query filter value type: %v", err)
}
op, ok := operatorToProto[qf.Op]
if !ok {
return errors.New("datastore: unknown query filter operator")
}
xf := &pb.PropertyFilter{
Op: op,
Property: &pb.PropertyReference{Name: qf.FieldName},
Value: v,
}
filters = append(filters, &pb.Filter{
FilterType: &pb.Filter_PropertyFilter{PropertyFilter: xf},
})
}
if q.ancestor != nil {
filters = append(filters, &pb.Filter{
FilterType: &pb.Filter_PropertyFilter{PropertyFilter: &pb.PropertyFilter{
Property: &pb.PropertyReference{Name: keyFieldName},
Op: pb.PropertyFilter_HAS_ANCESTOR,
Value: &pb.Value{ValueType: &pb.Value_KeyValue{KeyValue: keyToProto(q.ancestor)}},
}}})
}
if len(filters) == 1 {
dst.Filter = filters[0]
} else if len(filters) > 1 {
dst.Filter = &pb.Filter{FilterType: &pb.Filter_CompositeFilter{CompositeFilter: &pb.CompositeFilter{
Op: pb.CompositeFilter_AND,
Filters: filters,
}}}
}
for _, qo := range q.order {
if qo.FieldName == "" {
return errors.New("datastore: empty query order field name")
}
xo := &pb.PropertyOrder{
Property: &pb.PropertyReference{Name: qo.FieldName},
Direction: sortDirectionToProto[qo.Direction],
}
dst.Order = append(dst.Order, xo)
}
if q.limit >= 0 {
dst.Limit = &wrapperspb.Int32Value{Value: q.limit}
}
dst.Offset = q.offset
dst.StartCursor = q.start
dst.EndCursor = q.end
if t := q.trans; t != nil {
if t.id == nil {
return errExpiredTransaction
}
if q.eventual {
return errors.New("datastore: cannot use EventualConsistency query in a transaction")
}
req.ReadOptions = &pb.ReadOptions{
ConsistencyType: &pb.ReadOptions_Transaction{Transaction: t.id},
}
}
if q.eventual {
req.ReadOptions = &pb.ReadOptions{ConsistencyType: &pb.ReadOptions_ReadConsistency_{ReadConsistency: pb.ReadOptions_EVENTUAL}}
}
req.QueryType = &pb.RunQueryRequest_Query{Query: dst}
return nil
}
// Count returns the number of results for the given query.
//
// The running time and number of API calls made by Count scale linearly with
// the sum of the query's offset and limit. Unless the result count is
// expected to be small, it is best to specify a limit; otherwise Count will
// continue until it finishes counting or the provided context expires.
func (c *Client) Count(ctx context.Context, q *Query) (n int, err error) {
ctx = trace.StartSpan(ctx, "cloud.google.com/go/datastore.Query.Count")
defer func() { trace.EndSpan(ctx, err) }()
// Check that the query is well-formed.
if q.err != nil {
return 0, q.err
}
// Create a copy of the query, with keysOnly true (if we're not a projection,
// since the two are incompatible).
newQ := q.clone()
newQ.keysOnly = len(newQ.projection) == 0
// Create an iterator and use it to walk through the batches of results
// directly.
it := c.Run(ctx, newQ)
for {
err := it.nextBatch()
if err == iterator.Done {
return n, nil
}
if err != nil {
return 0, err
}
n += len(it.results)
}
}
// GetAll runs the provided query in the given context and returns all keys
// that match that query, as well as appending the values to dst.
//
// dst must have type *[]S or *[]*S or *[]P, for some struct type S or some non-
// interface, non-pointer type P such that P or *P implements PropertyLoadSaver.
//
// As a special case, *PropertyList is an invalid type for dst, even though a
// PropertyList is a slice of structs. It is treated as invalid to avoid being
// mistakenly passed when *[]PropertyList was intended.
//
// The keys returned by GetAll will be in a 1-1 correspondence with the entities
// added to dst.
//
// If q is a ``keys-only'' query, GetAll ignores dst and only returns the keys.
//
// The running time and number of API calls made by GetAll scale linearly with
// with the sum of the query's offset and limit. Unless the result count is
// expected to be small, it is best to specify a limit; otherwise GetAll will
// continue until it finishes collecting results or the provided context
// expires.
func (c *Client) GetAll(ctx context.Context, q *Query, dst interface{}) (keys []*Key, err error) {
ctx = trace.StartSpan(ctx, "cloud.google.com/go/datastore.Query.GetAll")
defer func() { trace.EndSpan(ctx, err) }()
var (
dv reflect.Value
mat multiArgType
elemType reflect.Type
errFieldMismatch error
)
if !q.keysOnly {
dv = reflect.ValueOf(dst)
if dv.Kind() != reflect.Ptr || dv.IsNil() {
return nil, ErrInvalidEntityType
}
dv = dv.Elem()
mat, elemType = checkMultiArg(dv)
if mat == multiArgTypeInvalid || mat == multiArgTypeInterface {
return nil, ErrInvalidEntityType
}
}
for t := c.Run(ctx, q); ; {
k, e, err := t.next()
if err == iterator.Done {
break
}
if err != nil {
return keys, err
}
if !q.keysOnly {
ev := reflect.New(elemType)
if elemType.Kind() == reflect.Map {
// This is a special case. The zero values of a map type are
// not immediately useful; they have to be make'd.
//
// Funcs and channels are similar, in that a zero value is not useful,
// but even a freshly make'd channel isn't useful: there's no fixed
// channel buffer size that is always going to be large enough, and
// there's no goroutine to drain the other end. Theoretically, these
// types could be supported, for example by sniffing for a constructor
// method or requiring prior registration, but for now it's not a
// frequent enough concern to be worth it. Programmers can work around
// it by explicitly using Iterator.Next instead of the Query.GetAll
// convenience method.
x := reflect.MakeMap(elemType)
ev.Elem().Set(x)
}
if err = loadEntityProto(ev.Interface(), e); err != nil {
if _, ok := err.(*ErrFieldMismatch); ok {
// We continue loading entities even in the face of field mismatch errors.
// If we encounter any other error, that other error is returned. Otherwise,
// an ErrFieldMismatch is returned.
errFieldMismatch = err
} else {
return keys, err
}
}
if mat != multiArgTypeStructPtr {
ev = ev.Elem()
}
dv.Set(reflect.Append(dv, ev))
}
keys = append(keys, k)
}
return keys, errFieldMismatch
}
// Run runs the given query in the given context.
func (c *Client) Run(ctx context.Context, q *Query) *Iterator {
if q.err != nil {
return &Iterator{err: q.err}
}
t := &Iterator{
ctx: ctx,
client: c,
limit: q.limit,
offset: q.offset,
keysOnly: q.keysOnly,
pageCursor: q.start,
entityCursor: q.start,
req: &pb.RunQueryRequest{
ProjectId: c.dataset,
},
}
if q.namespace != "" {
t.req.PartitionId = &pb.PartitionId{
NamespaceId: q.namespace,
}
}
if err := q.toProto(t.req); err != nil {
t.err = err
}
return t
}
// Iterator is the result of running a query.
type Iterator struct {
ctx context.Context
client *Client
err error
// results is the list of EntityResults still to be iterated over from the
// most recent API call. It will be nil if no requests have yet been issued.
results []*pb.EntityResult
// req is the request to send. It may be modified and used multiple times.
req *pb.RunQueryRequest
// limit is the limit on the number of results this iterator should return.
// The zero value is used to prevent further fetches from the server.
// A negative value means unlimited.
limit int32
// offset is the number of results that still need to be skipped.
offset int32
// keysOnly records whether the query was keys-only (skip entity loading).
keysOnly bool
// pageCursor is the compiled cursor for the next batch/page of result.
// TODO(djd): Can we delete this in favour of paging with the last
// entityCursor from each batch?
pageCursor []byte
// entityCursor is the compiled cursor of the next result.
entityCursor []byte
}
// Next returns the key of the next result. When there are no more results,
// iterator.Done is returned as the error.
//
// If the query is not keys only and dst is non-nil, it also loads the entity
// stored for that key into the struct pointer or PropertyLoadSaver dst, with
// the same semantics and possible errors as for the Get function.
func (t *Iterator) Next(dst interface{}) (k *Key, err error) {
k, e, err := t.next()
if err != nil {
return nil, err
}
if dst != nil && !t.keysOnly {
err = loadEntityProto(dst, e)
}
return k, err
}
func (t *Iterator) next() (*Key, *pb.Entity, error) {
// Fetch additional batches while there are no more results.
for t.err == nil && len(t.results) == 0 {
t.err = t.nextBatch()
}
if t.err != nil {
return nil, nil, t.err
}
// Extract the next result, update cursors, and parse the entity's key.
e := t.results[0]
t.results = t.results[1:]
t.entityCursor = e.Cursor
if len(t.results) == 0 {
t.entityCursor = t.pageCursor // At the end of the batch.
}
if e.Entity.Key == nil {
return nil, nil, errors.New("datastore: internal error: server did not return a key")
}
k, err := protoToKey(e.Entity.Key)
if err != nil || k.Incomplete() {
return nil, nil, errors.New("datastore: internal error: server returned an invalid key")
}
return k, e.Entity, nil
}
// nextBatch makes a single call to the server for a batch of results.
func (t *Iterator) nextBatch() error {
if t.err != nil {
return t.err
}
if t.limit == 0 {
return iterator.Done // Short-circuits the zero-item response.
}
// Adjust the query with the latest start cursor, limit and offset.
q := t.req.GetQuery()
q.StartCursor = t.pageCursor
q.Offset = t.offset
if t.limit >= 0 {
q.Limit = &wrapperspb.Int32Value{Value: t.limit}
} else {
q.Limit = nil
}
// Run the query.
resp, err := t.client.client.RunQuery(t.ctx, t.req)
if err != nil {
return err
}
// Adjust any offset from skipped results.
skip := resp.Batch.SkippedResults
if skip < 0 {
return errors.New("datastore: internal error: negative number of skipped_results")
}
t.offset -= skip
if t.offset < 0 {
return errors.New("datastore: internal error: query skipped too many results")
}
if t.offset > 0 && len(resp.Batch.EntityResults) > 0 {
return errors.New("datastore: internal error: query returned results before requested offset")
}
// Adjust the limit.
if t.limit >= 0 {
t.limit -= int32(len(resp.Batch.EntityResults))
if t.limit < 0 {
return errors.New("datastore: internal error: query returned more results than the limit")
}
}
// If there are no more results available, set limit to zero to prevent
// further fetches. Otherwise, check that there is a next page cursor available.
if resp.Batch.MoreResults != pb.QueryResultBatch_NOT_FINISHED {
t.limit = 0
} else if resp.Batch.EndCursor == nil {
return errors.New("datastore: internal error: server did not return a cursor")
}
// Update cursors.
// If any results were skipped, use the SkippedCursor as the next entity cursor.
if skip > 0 {
t.entityCursor = resp.Batch.SkippedCursor
} else {
t.entityCursor = q.StartCursor
}
t.pageCursor = resp.Batch.EndCursor
t.results = resp.Batch.EntityResults
return nil
}
// Cursor returns a cursor for the iterator's current location.
func (t *Iterator) Cursor() (c Cursor, err error) {
t.ctx = trace.StartSpan(t.ctx, "cloud.google.com/go/datastore.Query.Cursor")
defer func() { trace.EndSpan(t.ctx, err) }()
// If there is still an offset, we need to the skip those results first.
for t.err == nil && t.offset > 0 {
t.err = t.nextBatch()
}
if t.err != nil && t.err != iterator.Done {
return Cursor{}, t.err
}
return Cursor{t.entityCursor}, nil
}
// Cursor is an iterator's position. It can be converted to and from an opaque
// string. A cursor can be used from different HTTP requests, but only with a
// query with the same kind, ancestor, filter and order constraints.
//
// The zero Cursor can be used to indicate that there is no start and/or end
// constraint for a query.
type Cursor struct {
cc []byte
}
// String returns a base-64 string representation of a cursor.
func (c Cursor) String() string {
if c.cc == nil {
return ""
}
return strings.TrimRight(base64.URLEncoding.EncodeToString(c.cc), "=")
}
// DecodeCursor decodes a cursor from its base-64 string representation.
func DecodeCursor(s string) (Cursor, error) {
if s == "" {
return Cursor{}, nil
}
if n := len(s) % 4; n != 0 {
s += strings.Repeat("=", 4-n)
}
b, err := base64.URLEncoding.DecodeString(s)
if err != nil {
return Cursor{}, err
}
return Cursor{b}, nil
}