package humanize

import (
	"math/big"
	"strconv"
	"strings"
)

// Comma produces a string form of the given number in base 10 with
// commas after every three orders of magnitude.
//
// e.g. Comma(834142) -> 834,142
func Comma(v int64) string {
	sign := ""
	if v < 0 {
		sign = "-"
		v = 0 - v
	}

	parts := []string{"", "", "", "", "", "", "", ""}
	j := len(parts) - 1

	for v > 999 {
		parts[j] = strconv.FormatInt(v%1000, 10)
		switch len(parts[j]) {
		case 2:
			parts[j] = "0" + parts[j]
		case 1:
			parts[j] = "00" + parts[j]
		}
		v = v / 1000
		j--
	}
	parts[j] = strconv.Itoa(int(v))
	return sign + strings.Join(parts[j:len(parts)], ",")
}

// BigComma produces a string form of the given big.Int in base 10
// with commas after every three orders of magnitude.
func BigComma(b *big.Int) string {
	sign := ""
	if b.Sign() < 0 {
		sign = "-"
		b.Abs(b)
	}

	athousand := big.NewInt(1000)
	c := (&big.Int{}).Set(b)
	_, m := oom(c, athousand)
	parts := make([]string, m+1)
	j := len(parts) - 1

	mod := &big.Int{}
	for b.Cmp(athousand) >= 0 {
		b.DivMod(b, athousand, mod)
		parts[j] = strconv.FormatInt(mod.Int64(), 10)
		switch len(parts[j]) {
		case 2:
			parts[j] = "0" + parts[j]
		case 1:
			parts[j] = "00" + parts[j]
		}
		j--
	}
	parts[j] = strconv.Itoa(int(b.Int64()))
	return sign + strings.Join(parts[j:len(parts)], ",")
}