mirror of
https://github.com/Luzifer/cloudkeys-go.git
synced 2024-11-10 07:00:08 +00:00
Knut Ahlers
a1df72edc5
commitf0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:19:56 2017 +0100 Mark option as deprecated Signed-off-by: Knut Ahlers <knut@ahlers.me> commit9891df2a16
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:11:56 2017 +0100 Fix: Typo Signed-off-by: Knut Ahlers <knut@ahlers.me> commit836006de64
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:04:20 2017 +0100 Add new dependencies Signed-off-by: Knut Ahlers <knut@ahlers.me> commitd64fee60c8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 11:55:52 2017 +0100 Replace insecure password hashing Prior this commit passwords were hashed with a static salt and using the SHA1 hashing function. This could lead to passwords being attackable in case someone gets access to the raw data stored inside the database. This commit introduces password hashing using bcrypt hashing function which addresses this issue. Old passwords are not automatically re-hashed as they are unknown. Replacing the old password scheme is not that easy and needs #10 to be solved. Therefore the old hashing scheme is kept for compatibility reason. Signed-off-by: Knut Ahlers <knut@ahlers.me> Signed-off-by: Knut Ahlers <knut@ahlers.me> closes #14 closes #15
44 lines
2.4 KiB
Go
44 lines
2.4 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package bn256
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
func bigFromBase10(s string) *big.Int {
|
|
n, _ := new(big.Int).SetString(s, 10)
|
|
return n
|
|
}
|
|
|
|
// u is the BN parameter that determines the prime: 1868033³.
|
|
var u = bigFromBase10("6518589491078791937")
|
|
|
|
// p is a prime over which we form a basic field: 36u⁴+36u³+24u²+6u+1.
|
|
var p = bigFromBase10("65000549695646603732796438742359905742825358107623003571877145026864184071783")
|
|
|
|
// Order is the number of elements in both G₁ and G₂: 36u⁴+36u³+18u²+6u+1.
|
|
var Order = bigFromBase10("65000549695646603732796438742359905742570406053903786389881062969044166799969")
|
|
|
|
// xiToPMinus1Over6 is ξ^((p-1)/6) where ξ = i+3.
|
|
var xiToPMinus1Over6 = &gfP2{bigFromBase10("8669379979083712429711189836753509758585994370025260553045152614783263110636"), bigFromBase10("19998038925833620163537568958541907098007303196759855091367510456613536016040")}
|
|
|
|
// xiToPMinus1Over3 is ξ^((p-1)/3) where ξ = i+3.
|
|
var xiToPMinus1Over3 = &gfP2{bigFromBase10("26098034838977895781559542626833399156321265654106457577426020397262786167059"), bigFromBase10("15931493369629630809226283458085260090334794394361662678240713231519278691715")}
|
|
|
|
// xiToPMinus1Over2 is ξ^((p-1)/2) where ξ = i+3.
|
|
var xiToPMinus1Over2 = &gfP2{bigFromBase10("50997318142241922852281555961173165965672272825141804376761836765206060036244"), bigFromBase10("38665955945962842195025998234511023902832543644254935982879660597356748036009")}
|
|
|
|
// xiToPSquaredMinus1Over3 is ξ^((p²-1)/3) where ξ = i+3.
|
|
var xiToPSquaredMinus1Over3 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437752")
|
|
|
|
// xiTo2PSquaredMinus2Over3 is ξ^((2p²-2)/3) where ξ = i+3 (a cubic root of unity, mod p).
|
|
var xiTo2PSquaredMinus2Over3 = bigFromBase10("4985783334309134261147736404674766913742361673560802634030")
|
|
|
|
// xiToPSquaredMinus1Over6 is ξ^((1p²-1)/6) where ξ = i+3 (a cubic root of -1, mod p).
|
|
var xiToPSquaredMinus1Over6 = bigFromBase10("65000549695646603727810655408050771481677621702948236658134783353303381437753")
|
|
|
|
// xiTo2PMinus2Over3 is ξ^((2p-2)/3) where ξ = i+3.
|
|
var xiTo2PMinus2Over3 = &gfP2{bigFromBase10("19885131339612776214803633203834694332692106372356013117629940868870585019582"), bigFromBase10("21645619881471562101905880913352894726728173167203616652430647841922248593627")}
|