mirror of
https://github.com/Luzifer/cloudkeys-go.git
synced 2024-11-10 07:00:08 +00:00
Knut Ahlers
a1df72edc5
commitf0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:19:56 2017 +0100 Mark option as deprecated Signed-off-by: Knut Ahlers <knut@ahlers.me> commit9891df2a16
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:11:56 2017 +0100 Fix: Typo Signed-off-by: Knut Ahlers <knut@ahlers.me> commit836006de64
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:04:20 2017 +0100 Add new dependencies Signed-off-by: Knut Ahlers <knut@ahlers.me> commitd64fee60c8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 11:55:52 2017 +0100 Replace insecure password hashing Prior this commit passwords were hashed with a static salt and using the SHA1 hashing function. This could lead to passwords being attackable in case someone gets access to the raw data stored inside the database. This commit introduces password hashing using bcrypt hashing function which addresses this issue. Old passwords are not automatically re-hashed as they are unknown. Replacing the old password scheme is not that easy and needs #10 to be solved. Therefore the old hashing scheme is kept for compatibility reason. Signed-off-by: Knut Ahlers <knut@ahlers.me> Signed-off-by: Knut Ahlers <knut@ahlers.me> closes #14 closes #15
296 lines
5.6 KiB
Go
296 lines
5.6 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package bn256
|
|
|
|
// For details of the algorithms used, see "Multiplication and Squaring on
|
|
// Pairing-Friendly Fields, Devegili et al.
|
|
// http://eprint.iacr.org/2006/471.pdf.
|
|
|
|
import (
|
|
"math/big"
|
|
)
|
|
|
|
// gfP6 implements the field of size p⁶ as a cubic extension of gfP2 where τ³=ξ
|
|
// and ξ=i+3.
|
|
type gfP6 struct {
|
|
x, y, z *gfP2 // value is xτ² + yτ + z
|
|
}
|
|
|
|
func newGFp6(pool *bnPool) *gfP6 {
|
|
return &gfP6{newGFp2(pool), newGFp2(pool), newGFp2(pool)}
|
|
}
|
|
|
|
func (e *gfP6) String() string {
|
|
return "(" + e.x.String() + "," + e.y.String() + "," + e.z.String() + ")"
|
|
}
|
|
|
|
func (e *gfP6) Put(pool *bnPool) {
|
|
e.x.Put(pool)
|
|
e.y.Put(pool)
|
|
e.z.Put(pool)
|
|
}
|
|
|
|
func (e *gfP6) Set(a *gfP6) *gfP6 {
|
|
e.x.Set(a.x)
|
|
e.y.Set(a.y)
|
|
e.z.Set(a.z)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) SetZero() *gfP6 {
|
|
e.x.SetZero()
|
|
e.y.SetZero()
|
|
e.z.SetZero()
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) SetOne() *gfP6 {
|
|
e.x.SetZero()
|
|
e.y.SetZero()
|
|
e.z.SetOne()
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) Minimal() {
|
|
e.x.Minimal()
|
|
e.y.Minimal()
|
|
e.z.Minimal()
|
|
}
|
|
|
|
func (e *gfP6) IsZero() bool {
|
|
return e.x.IsZero() && e.y.IsZero() && e.z.IsZero()
|
|
}
|
|
|
|
func (e *gfP6) IsOne() bool {
|
|
return e.x.IsZero() && e.y.IsZero() && e.z.IsOne()
|
|
}
|
|
|
|
func (e *gfP6) Negative(a *gfP6) *gfP6 {
|
|
e.x.Negative(a.x)
|
|
e.y.Negative(a.y)
|
|
e.z.Negative(a.z)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) Frobenius(a *gfP6, pool *bnPool) *gfP6 {
|
|
e.x.Conjugate(a.x)
|
|
e.y.Conjugate(a.y)
|
|
e.z.Conjugate(a.z)
|
|
|
|
e.x.Mul(e.x, xiTo2PMinus2Over3, pool)
|
|
e.y.Mul(e.y, xiToPMinus1Over3, pool)
|
|
return e
|
|
}
|
|
|
|
// FrobeniusP2 computes (xτ²+yτ+z)^(p²) = xτ^(2p²) + yτ^(p²) + z
|
|
func (e *gfP6) FrobeniusP2(a *gfP6) *gfP6 {
|
|
// τ^(2p²) = τ²τ^(2p²-2) = τ²ξ^((2p²-2)/3)
|
|
e.x.MulScalar(a.x, xiTo2PSquaredMinus2Over3)
|
|
// τ^(p²) = ττ^(p²-1) = τξ^((p²-1)/3)
|
|
e.y.MulScalar(a.y, xiToPSquaredMinus1Over3)
|
|
e.z.Set(a.z)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) Add(a, b *gfP6) *gfP6 {
|
|
e.x.Add(a.x, b.x)
|
|
e.y.Add(a.y, b.y)
|
|
e.z.Add(a.z, b.z)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) Sub(a, b *gfP6) *gfP6 {
|
|
e.x.Sub(a.x, b.x)
|
|
e.y.Sub(a.y, b.y)
|
|
e.z.Sub(a.z, b.z)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) Double(a *gfP6) *gfP6 {
|
|
e.x.Double(a.x)
|
|
e.y.Double(a.y)
|
|
e.z.Double(a.z)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) Mul(a, b *gfP6, pool *bnPool) *gfP6 {
|
|
// "Multiplication and Squaring on Pairing-Friendly Fields"
|
|
// Section 4, Karatsuba method.
|
|
// http://eprint.iacr.org/2006/471.pdf
|
|
|
|
v0 := newGFp2(pool)
|
|
v0.Mul(a.z, b.z, pool)
|
|
v1 := newGFp2(pool)
|
|
v1.Mul(a.y, b.y, pool)
|
|
v2 := newGFp2(pool)
|
|
v2.Mul(a.x, b.x, pool)
|
|
|
|
t0 := newGFp2(pool)
|
|
t0.Add(a.x, a.y)
|
|
t1 := newGFp2(pool)
|
|
t1.Add(b.x, b.y)
|
|
tz := newGFp2(pool)
|
|
tz.Mul(t0, t1, pool)
|
|
|
|
tz.Sub(tz, v1)
|
|
tz.Sub(tz, v2)
|
|
tz.MulXi(tz, pool)
|
|
tz.Add(tz, v0)
|
|
|
|
t0.Add(a.y, a.z)
|
|
t1.Add(b.y, b.z)
|
|
ty := newGFp2(pool)
|
|
ty.Mul(t0, t1, pool)
|
|
ty.Sub(ty, v0)
|
|
ty.Sub(ty, v1)
|
|
t0.MulXi(v2, pool)
|
|
ty.Add(ty, t0)
|
|
|
|
t0.Add(a.x, a.z)
|
|
t1.Add(b.x, b.z)
|
|
tx := newGFp2(pool)
|
|
tx.Mul(t0, t1, pool)
|
|
tx.Sub(tx, v0)
|
|
tx.Add(tx, v1)
|
|
tx.Sub(tx, v2)
|
|
|
|
e.x.Set(tx)
|
|
e.y.Set(ty)
|
|
e.z.Set(tz)
|
|
|
|
t0.Put(pool)
|
|
t1.Put(pool)
|
|
tx.Put(pool)
|
|
ty.Put(pool)
|
|
tz.Put(pool)
|
|
v0.Put(pool)
|
|
v1.Put(pool)
|
|
v2.Put(pool)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) MulScalar(a *gfP6, b *gfP2, pool *bnPool) *gfP6 {
|
|
e.x.Mul(a.x, b, pool)
|
|
e.y.Mul(a.y, b, pool)
|
|
e.z.Mul(a.z, b, pool)
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) MulGFP(a *gfP6, b *big.Int) *gfP6 {
|
|
e.x.MulScalar(a.x, b)
|
|
e.y.MulScalar(a.y, b)
|
|
e.z.MulScalar(a.z, b)
|
|
return e
|
|
}
|
|
|
|
// MulTau computes τ·(aτ²+bτ+c) = bτ²+cτ+aξ
|
|
func (e *gfP6) MulTau(a *gfP6, pool *bnPool) {
|
|
tz := newGFp2(pool)
|
|
tz.MulXi(a.x, pool)
|
|
ty := newGFp2(pool)
|
|
ty.Set(a.y)
|
|
e.y.Set(a.z)
|
|
e.x.Set(ty)
|
|
e.z.Set(tz)
|
|
tz.Put(pool)
|
|
ty.Put(pool)
|
|
}
|
|
|
|
func (e *gfP6) Square(a *gfP6, pool *bnPool) *gfP6 {
|
|
v0 := newGFp2(pool).Square(a.z, pool)
|
|
v1 := newGFp2(pool).Square(a.y, pool)
|
|
v2 := newGFp2(pool).Square(a.x, pool)
|
|
|
|
c0 := newGFp2(pool).Add(a.x, a.y)
|
|
c0.Square(c0, pool)
|
|
c0.Sub(c0, v1)
|
|
c0.Sub(c0, v2)
|
|
c0.MulXi(c0, pool)
|
|
c0.Add(c0, v0)
|
|
|
|
c1 := newGFp2(pool).Add(a.y, a.z)
|
|
c1.Square(c1, pool)
|
|
c1.Sub(c1, v0)
|
|
c1.Sub(c1, v1)
|
|
xiV2 := newGFp2(pool).MulXi(v2, pool)
|
|
c1.Add(c1, xiV2)
|
|
|
|
c2 := newGFp2(pool).Add(a.x, a.z)
|
|
c2.Square(c2, pool)
|
|
c2.Sub(c2, v0)
|
|
c2.Add(c2, v1)
|
|
c2.Sub(c2, v2)
|
|
|
|
e.x.Set(c2)
|
|
e.y.Set(c1)
|
|
e.z.Set(c0)
|
|
|
|
v0.Put(pool)
|
|
v1.Put(pool)
|
|
v2.Put(pool)
|
|
c0.Put(pool)
|
|
c1.Put(pool)
|
|
c2.Put(pool)
|
|
xiV2.Put(pool)
|
|
|
|
return e
|
|
}
|
|
|
|
func (e *gfP6) Invert(a *gfP6, pool *bnPool) *gfP6 {
|
|
// See "Implementing cryptographic pairings", M. Scott, section 3.2.
|
|
// ftp://136.206.11.249/pub/crypto/pairings.pdf
|
|
|
|
// Here we can give a short explanation of how it works: let j be a cubic root of
|
|
// unity in GF(p²) so that 1+j+j²=0.
|
|
// Then (xτ² + yτ + z)(xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
|
// = (xτ² + yτ + z)(Cτ²+Bτ+A)
|
|
// = (x³ξ²+y³ξ+z³-3ξxyz) = F is an element of the base field (the norm).
|
|
//
|
|
// On the other hand (xj²τ² + yjτ + z)(xjτ² + yj²τ + z)
|
|
// = τ²(y²-ξxz) + τ(ξx²-yz) + (z²-ξxy)
|
|
//
|
|
// So that's why A = (z²-ξxy), B = (ξx²-yz), C = (y²-ξxz)
|
|
t1 := newGFp2(pool)
|
|
|
|
A := newGFp2(pool)
|
|
A.Square(a.z, pool)
|
|
t1.Mul(a.x, a.y, pool)
|
|
t1.MulXi(t1, pool)
|
|
A.Sub(A, t1)
|
|
|
|
B := newGFp2(pool)
|
|
B.Square(a.x, pool)
|
|
B.MulXi(B, pool)
|
|
t1.Mul(a.y, a.z, pool)
|
|
B.Sub(B, t1)
|
|
|
|
C := newGFp2(pool)
|
|
C.Square(a.y, pool)
|
|
t1.Mul(a.x, a.z, pool)
|
|
C.Sub(C, t1)
|
|
|
|
F := newGFp2(pool)
|
|
F.Mul(C, a.y, pool)
|
|
F.MulXi(F, pool)
|
|
t1.Mul(A, a.z, pool)
|
|
F.Add(F, t1)
|
|
t1.Mul(B, a.x, pool)
|
|
t1.MulXi(t1, pool)
|
|
F.Add(F, t1)
|
|
|
|
F.Invert(F, pool)
|
|
|
|
e.x.Mul(C, F, pool)
|
|
e.y.Mul(B, F, pool)
|
|
e.z.Mul(A, F, pool)
|
|
|
|
t1.Put(pool)
|
|
A.Put(pool)
|
|
B.Put(pool)
|
|
C.Put(pool)
|
|
F.Put(pool)
|
|
|
|
return e
|
|
}
|