1
0
Fork 0
mirror of https://github.com/Luzifer/cloudkeys-go.git synced 2024-11-09 22:50:05 +00:00
cloudkeys-go/vendor/golang.org/x/crypto/ocsp/ocsp.go
Knut Ahlers a1df72edc5
Squashed commit of the following:
commit f0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:19:56 2017 +0100

    Mark option as deprecated

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit 9891df2a16
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:11:56 2017 +0100

    Fix: Typo

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit 836006de64
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:04:20 2017 +0100

    Add new dependencies

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit d64fee60c8
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 11:55:52 2017 +0100

    Replace insecure password hashing

    Prior this commit passwords were hashed with a static salt and using the
    SHA1 hashing function. This could lead to passwords being attackable in
    case someone gets access to the raw data stored inside the database.
    This commit introduces password hashing using bcrypt hashing function
    which addresses this issue.

    Old passwords are not automatically re-hashed as they are unknown.
    Replacing the old password scheme is not that easy and needs #10 to be
    solved. Therefore the old hashing scheme is kept for compatibility
    reason.

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

Signed-off-by: Knut Ahlers <knut@ahlers.me>

closes #14
closes #15
2017-12-24 19:44:24 +01:00

778 lines
24 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package ocsp parses OCSP responses as specified in RFC 2560. OCSP responses
// are signed messages attesting to the validity of a certificate for a small
// period of time. This is used to manage revocation for X.509 certificates.
package ocsp // import "golang.org/x/crypto/ocsp"
import (
"crypto"
"crypto/ecdsa"
"crypto/elliptic"
"crypto/rand"
"crypto/rsa"
_ "crypto/sha1"
_ "crypto/sha256"
_ "crypto/sha512"
"crypto/x509"
"crypto/x509/pkix"
"encoding/asn1"
"errors"
"fmt"
"math/big"
"strconv"
"time"
)
var idPKIXOCSPBasic = asn1.ObjectIdentifier([]int{1, 3, 6, 1, 5, 5, 7, 48, 1, 1})
// ResponseStatus contains the result of an OCSP request. See
// https://tools.ietf.org/html/rfc6960#section-2.3
type ResponseStatus int
const (
Success ResponseStatus = 0
Malformed ResponseStatus = 1
InternalError ResponseStatus = 2
TryLater ResponseStatus = 3
// Status code four is unused in OCSP. See
// https://tools.ietf.org/html/rfc6960#section-4.2.1
SignatureRequired ResponseStatus = 5
Unauthorized ResponseStatus = 6
)
func (r ResponseStatus) String() string {
switch r {
case Success:
return "success"
case Malformed:
return "malformed"
case InternalError:
return "internal error"
case TryLater:
return "try later"
case SignatureRequired:
return "signature required"
case Unauthorized:
return "unauthorized"
default:
return "unknown OCSP status: " + strconv.Itoa(int(r))
}
}
// ResponseError is an error that may be returned by ParseResponse to indicate
// that the response itself is an error, not just that its indicating that a
// certificate is revoked, unknown, etc.
type ResponseError struct {
Status ResponseStatus
}
func (r ResponseError) Error() string {
return "ocsp: error from server: " + r.Status.String()
}
// These are internal structures that reflect the ASN.1 structure of an OCSP
// response. See RFC 2560, section 4.2.
type certID struct {
HashAlgorithm pkix.AlgorithmIdentifier
NameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// https://tools.ietf.org/html/rfc2560#section-4.1.1
type ocspRequest struct {
TBSRequest tbsRequest
}
type tbsRequest struct {
Version int `asn1:"explicit,tag:0,default:0,optional"`
RequestorName pkix.RDNSequence `asn1:"explicit,tag:1,optional"`
RequestList []request
}
type request struct {
Cert certID
}
type responseASN1 struct {
Status asn1.Enumerated
Response responseBytes `asn1:"explicit,tag:0,optional"`
}
type responseBytes struct {
ResponseType asn1.ObjectIdentifier
Response []byte
}
type basicResponse struct {
TBSResponseData responseData
SignatureAlgorithm pkix.AlgorithmIdentifier
Signature asn1.BitString
Certificates []asn1.RawValue `asn1:"explicit,tag:0,optional"`
}
type responseData struct {
Raw asn1.RawContent
Version int `asn1:"optional,default:0,explicit,tag:0"`
RawResponderID asn1.RawValue
ProducedAt time.Time `asn1:"generalized"`
Responses []singleResponse
}
type singleResponse struct {
CertID certID
Good asn1.Flag `asn1:"tag:0,optional"`
Revoked revokedInfo `asn1:"tag:1,optional"`
Unknown asn1.Flag `asn1:"tag:2,optional"`
ThisUpdate time.Time `asn1:"generalized"`
NextUpdate time.Time `asn1:"generalized,explicit,tag:0,optional"`
SingleExtensions []pkix.Extension `asn1:"explicit,tag:1,optional"`
}
type revokedInfo struct {
RevocationTime time.Time `asn1:"generalized"`
Reason asn1.Enumerated `asn1:"explicit,tag:0,optional"`
}
var (
oidSignatureMD2WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 2}
oidSignatureMD5WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 4}
oidSignatureSHA1WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 5}
oidSignatureSHA256WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 11}
oidSignatureSHA384WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 12}
oidSignatureSHA512WithRSA = asn1.ObjectIdentifier{1, 2, 840, 113549, 1, 1, 13}
oidSignatureDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10040, 4, 3}
oidSignatureDSAWithSHA256 = asn1.ObjectIdentifier{2, 16, 840, 1, 101, 3, 4, 3, 2}
oidSignatureECDSAWithSHA1 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 1}
oidSignatureECDSAWithSHA256 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 2}
oidSignatureECDSAWithSHA384 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 3}
oidSignatureECDSAWithSHA512 = asn1.ObjectIdentifier{1, 2, 840, 10045, 4, 3, 4}
)
var hashOIDs = map[crypto.Hash]asn1.ObjectIdentifier{
crypto.SHA1: asn1.ObjectIdentifier([]int{1, 3, 14, 3, 2, 26}),
crypto.SHA256: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 1}),
crypto.SHA384: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 2}),
crypto.SHA512: asn1.ObjectIdentifier([]int{2, 16, 840, 1, 101, 3, 4, 2, 3}),
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
var signatureAlgorithmDetails = []struct {
algo x509.SignatureAlgorithm
oid asn1.ObjectIdentifier
pubKeyAlgo x509.PublicKeyAlgorithm
hash crypto.Hash
}{
{x509.MD2WithRSA, oidSignatureMD2WithRSA, x509.RSA, crypto.Hash(0) /* no value for MD2 */},
{x509.MD5WithRSA, oidSignatureMD5WithRSA, x509.RSA, crypto.MD5},
{x509.SHA1WithRSA, oidSignatureSHA1WithRSA, x509.RSA, crypto.SHA1},
{x509.SHA256WithRSA, oidSignatureSHA256WithRSA, x509.RSA, crypto.SHA256},
{x509.SHA384WithRSA, oidSignatureSHA384WithRSA, x509.RSA, crypto.SHA384},
{x509.SHA512WithRSA, oidSignatureSHA512WithRSA, x509.RSA, crypto.SHA512},
{x509.DSAWithSHA1, oidSignatureDSAWithSHA1, x509.DSA, crypto.SHA1},
{x509.DSAWithSHA256, oidSignatureDSAWithSHA256, x509.DSA, crypto.SHA256},
{x509.ECDSAWithSHA1, oidSignatureECDSAWithSHA1, x509.ECDSA, crypto.SHA1},
{x509.ECDSAWithSHA256, oidSignatureECDSAWithSHA256, x509.ECDSA, crypto.SHA256},
{x509.ECDSAWithSHA384, oidSignatureECDSAWithSHA384, x509.ECDSA, crypto.SHA384},
{x509.ECDSAWithSHA512, oidSignatureECDSAWithSHA512, x509.ECDSA, crypto.SHA512},
}
// TODO(rlb): This is also from crypto/x509, so same comment as AGL's below
func signingParamsForPublicKey(pub interface{}, requestedSigAlgo x509.SignatureAlgorithm) (hashFunc crypto.Hash, sigAlgo pkix.AlgorithmIdentifier, err error) {
var pubType x509.PublicKeyAlgorithm
switch pub := pub.(type) {
case *rsa.PublicKey:
pubType = x509.RSA
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureSHA256WithRSA
sigAlgo.Parameters = asn1.RawValue{
Tag: 5,
}
case *ecdsa.PublicKey:
pubType = x509.ECDSA
switch pub.Curve {
case elliptic.P224(), elliptic.P256():
hashFunc = crypto.SHA256
sigAlgo.Algorithm = oidSignatureECDSAWithSHA256
case elliptic.P384():
hashFunc = crypto.SHA384
sigAlgo.Algorithm = oidSignatureECDSAWithSHA384
case elliptic.P521():
hashFunc = crypto.SHA512
sigAlgo.Algorithm = oidSignatureECDSAWithSHA512
default:
err = errors.New("x509: unknown elliptic curve")
}
default:
err = errors.New("x509: only RSA and ECDSA keys supported")
}
if err != nil {
return
}
if requestedSigAlgo == 0 {
return
}
found := false
for _, details := range signatureAlgorithmDetails {
if details.algo == requestedSigAlgo {
if details.pubKeyAlgo != pubType {
err = errors.New("x509: requested SignatureAlgorithm does not match private key type")
return
}
sigAlgo.Algorithm, hashFunc = details.oid, details.hash
if hashFunc == 0 {
err = errors.New("x509: cannot sign with hash function requested")
return
}
found = true
break
}
}
if !found {
err = errors.New("x509: unknown SignatureAlgorithm")
}
return
}
// TODO(agl): this is taken from crypto/x509 and so should probably be exported
// from crypto/x509 or crypto/x509/pkix.
func getSignatureAlgorithmFromOID(oid asn1.ObjectIdentifier) x509.SignatureAlgorithm {
for _, details := range signatureAlgorithmDetails {
if oid.Equal(details.oid) {
return details.algo
}
}
return x509.UnknownSignatureAlgorithm
}
// TODO(rlb): This is not taken from crypto/x509, but it's of the same general form.
func getHashAlgorithmFromOID(target asn1.ObjectIdentifier) crypto.Hash {
for hash, oid := range hashOIDs {
if oid.Equal(target) {
return hash
}
}
return crypto.Hash(0)
}
func getOIDFromHashAlgorithm(target crypto.Hash) asn1.ObjectIdentifier {
for hash, oid := range hashOIDs {
if hash == target {
return oid
}
}
return nil
}
// This is the exposed reflection of the internal OCSP structures.
// The status values that can be expressed in OCSP. See RFC 6960.
const (
// Good means that the certificate is valid.
Good = iota
// Revoked means that the certificate has been deliberately revoked.
Revoked
// Unknown means that the OCSP responder doesn't know about the certificate.
Unknown
// ServerFailed is unused and was never used (see
// https://go-review.googlesource.com/#/c/18944). ParseResponse will
// return a ResponseError when an error response is parsed.
ServerFailed
)
// The enumerated reasons for revoking a certificate. See RFC 5280.
const (
Unspecified = 0
KeyCompromise = 1
CACompromise = 2
AffiliationChanged = 3
Superseded = 4
CessationOfOperation = 5
CertificateHold = 6
RemoveFromCRL = 8
PrivilegeWithdrawn = 9
AACompromise = 10
)
// Request represents an OCSP request. See RFC 6960.
type Request struct {
HashAlgorithm crypto.Hash
IssuerNameHash []byte
IssuerKeyHash []byte
SerialNumber *big.Int
}
// Marshal marshals the OCSP request to ASN.1 DER encoded form.
func (req *Request) Marshal() ([]byte, error) {
hashAlg := getOIDFromHashAlgorithm(req.HashAlgorithm)
if hashAlg == nil {
return nil, errors.New("Unknown hash algorithm")
}
return asn1.Marshal(ocspRequest{
tbsRequest{
Version: 0,
RequestList: []request{
{
Cert: certID{
pkix.AlgorithmIdentifier{
Algorithm: hashAlg,
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
req.IssuerNameHash,
req.IssuerKeyHash,
req.SerialNumber,
},
},
},
},
})
}
// Response represents an OCSP response containing a single SingleResponse. See
// RFC 6960.
type Response struct {
// Status is one of {Good, Revoked, Unknown}
Status int
SerialNumber *big.Int
ProducedAt, ThisUpdate, NextUpdate, RevokedAt time.Time
RevocationReason int
Certificate *x509.Certificate
// TBSResponseData contains the raw bytes of the signed response. If
// Certificate is nil then this can be used to verify Signature.
TBSResponseData []byte
Signature []byte
SignatureAlgorithm x509.SignatureAlgorithm
// IssuerHash is the hash used to compute the IssuerNameHash and IssuerKeyHash.
// Valid values are crypto.SHA1, crypto.SHA256, crypto.SHA384, and crypto.SHA512.
// If zero, the default is crypto.SHA1.
IssuerHash crypto.Hash
// RawResponderName optionally contains the DER-encoded subject of the
// responder certificate. Exactly one of RawResponderName and
// ResponderKeyHash is set.
RawResponderName []byte
// ResponderKeyHash optionally contains the SHA-1 hash of the
// responder's public key. Exactly one of RawResponderName and
// ResponderKeyHash is set.
ResponderKeyHash []byte
// Extensions contains raw X.509 extensions from the singleExtensions field
// of the OCSP response. When parsing certificates, this can be used to
// extract non-critical extensions that are not parsed by this package. When
// marshaling OCSP responses, the Extensions field is ignored, see
// ExtraExtensions.
Extensions []pkix.Extension
// ExtraExtensions contains extensions to be copied, raw, into any marshaled
// OCSP response (in the singleExtensions field). Values override any
// extensions that would otherwise be produced based on the other fields. The
// ExtraExtensions field is not populated when parsing certificates, see
// Extensions.
ExtraExtensions []pkix.Extension
}
// These are pre-serialized error responses for the various non-success codes
// defined by OCSP. The Unauthorized code in particular can be used by an OCSP
// responder that supports only pre-signed responses as a response to requests
// for certificates with unknown status. See RFC 5019.
var (
MalformedRequestErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x01}
InternalErrorErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x02}
TryLaterErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x03}
SigRequredErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x05}
UnauthorizedErrorResponse = []byte{0x30, 0x03, 0x0A, 0x01, 0x06}
)
// CheckSignatureFrom checks that the signature in resp is a valid signature
// from issuer. This should only be used if resp.Certificate is nil. Otherwise,
// the OCSP response contained an intermediate certificate that created the
// signature. That signature is checked by ParseResponse and only
// resp.Certificate remains to be validated.
func (resp *Response) CheckSignatureFrom(issuer *x509.Certificate) error {
return issuer.CheckSignature(resp.SignatureAlgorithm, resp.TBSResponseData, resp.Signature)
}
// ParseError results from an invalid OCSP response.
type ParseError string
func (p ParseError) Error() string {
return string(p)
}
// ParseRequest parses an OCSP request in DER form. It only supports
// requests for a single certificate. Signed requests are not supported.
// If a request includes a signature, it will result in a ParseError.
func ParseRequest(bytes []byte) (*Request, error) {
var req ocspRequest
rest, err := asn1.Unmarshal(bytes, &req)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP request")
}
if len(req.TBSRequest.RequestList) == 0 {
return nil, ParseError("OCSP request contains no request body")
}
innerRequest := req.TBSRequest.RequestList[0]
hashFunc := getHashAlgorithmFromOID(innerRequest.Cert.HashAlgorithm.Algorithm)
if hashFunc == crypto.Hash(0) {
return nil, ParseError("OCSP request uses unknown hash function")
}
return &Request{
HashAlgorithm: hashFunc,
IssuerNameHash: innerRequest.Cert.NameHash,
IssuerKeyHash: innerRequest.Cert.IssuerKeyHash,
SerialNumber: innerRequest.Cert.SerialNumber,
}, nil
}
// ParseResponse parses an OCSP response in DER form. It only supports
// responses for a single certificate. If the response contains a certificate
// then the signature over the response is checked. If issuer is not nil then
// it will be used to validate the signature or embedded certificate.
//
// Invalid responses and parse failures will result in a ParseError.
// Error responses will result in a ResponseError.
func ParseResponse(bytes []byte, issuer *x509.Certificate) (*Response, error) {
return ParseResponseForCert(bytes, nil, issuer)
}
// ParseResponseForCert parses an OCSP response in DER form and searches for a
// Response relating to cert. If such a Response is found and the OCSP response
// contains a certificate then the signature over the response is checked. If
// issuer is not nil then it will be used to validate the signature or embedded
// certificate.
//
// Invalid responses and parse failures will result in a ParseError.
// Error responses will result in a ResponseError.
func ParseResponseForCert(bytes []byte, cert, issuer *x509.Certificate) (*Response, error) {
var resp responseASN1
rest, err := asn1.Unmarshal(bytes, &resp)
if err != nil {
return nil, err
}
if len(rest) > 0 {
return nil, ParseError("trailing data in OCSP response")
}
if status := ResponseStatus(resp.Status); status != Success {
return nil, ResponseError{status}
}
if !resp.Response.ResponseType.Equal(idPKIXOCSPBasic) {
return nil, ParseError("bad OCSP response type")
}
var basicResp basicResponse
rest, err = asn1.Unmarshal(resp.Response.Response, &basicResp)
if err != nil {
return nil, err
}
if len(basicResp.Certificates) > 1 {
return nil, ParseError("OCSP response contains bad number of certificates")
}
if n := len(basicResp.TBSResponseData.Responses); n == 0 || cert == nil && n > 1 {
return nil, ParseError("OCSP response contains bad number of responses")
}
var singleResp singleResponse
if cert == nil {
singleResp = basicResp.TBSResponseData.Responses[0]
} else {
match := false
for _, resp := range basicResp.TBSResponseData.Responses {
if cert.SerialNumber.Cmp(resp.CertID.SerialNumber) == 0 {
singleResp = resp
match = true
break
}
}
if !match {
return nil, ParseError("no response matching the supplied certificate")
}
}
ret := &Response{
TBSResponseData: basicResp.TBSResponseData.Raw,
Signature: basicResp.Signature.RightAlign(),
SignatureAlgorithm: getSignatureAlgorithmFromOID(basicResp.SignatureAlgorithm.Algorithm),
Extensions: singleResp.SingleExtensions,
SerialNumber: singleResp.CertID.SerialNumber,
ProducedAt: basicResp.TBSResponseData.ProducedAt,
ThisUpdate: singleResp.ThisUpdate,
NextUpdate: singleResp.NextUpdate,
}
// Handle the ResponderID CHOICE tag. ResponderID can be flattened into
// TBSResponseData once https://go-review.googlesource.com/34503 has been
// released.
rawResponderID := basicResp.TBSResponseData.RawResponderID
switch rawResponderID.Tag {
case 1: // Name
var rdn pkix.RDNSequence
if rest, err := asn1.Unmarshal(rawResponderID.Bytes, &rdn); err != nil || len(rest) != 0 {
return nil, ParseError("invalid responder name")
}
ret.RawResponderName = rawResponderID.Bytes
case 2: // KeyHash
if rest, err := asn1.Unmarshal(rawResponderID.Bytes, &ret.ResponderKeyHash); err != nil || len(rest) != 0 {
return nil, ParseError("invalid responder key hash")
}
default:
return nil, ParseError("invalid responder id tag")
}
if len(basicResp.Certificates) > 0 {
ret.Certificate, err = x509.ParseCertificate(basicResp.Certificates[0].FullBytes)
if err != nil {
return nil, err
}
if err := ret.CheckSignatureFrom(ret.Certificate); err != nil {
return nil, ParseError("bad signature on embedded certificate: " + err.Error())
}
if issuer != nil {
if err := issuer.CheckSignature(ret.Certificate.SignatureAlgorithm, ret.Certificate.RawTBSCertificate, ret.Certificate.Signature); err != nil {
return nil, ParseError("bad OCSP signature: " + err.Error())
}
}
} else if issuer != nil {
if err := ret.CheckSignatureFrom(issuer); err != nil {
return nil, ParseError("bad OCSP signature: " + err.Error())
}
}
for _, ext := range singleResp.SingleExtensions {
if ext.Critical {
return nil, ParseError("unsupported critical extension")
}
}
for h, oid := range hashOIDs {
if singleResp.CertID.HashAlgorithm.Algorithm.Equal(oid) {
ret.IssuerHash = h
break
}
}
if ret.IssuerHash == 0 {
return nil, ParseError("unsupported issuer hash algorithm")
}
switch {
case bool(singleResp.Good):
ret.Status = Good
case bool(singleResp.Unknown):
ret.Status = Unknown
default:
ret.Status = Revoked
ret.RevokedAt = singleResp.Revoked.RevocationTime
ret.RevocationReason = int(singleResp.Revoked.Reason)
}
return ret, nil
}
// RequestOptions contains options for constructing OCSP requests.
type RequestOptions struct {
// Hash contains the hash function that should be used when
// constructing the OCSP request. If zero, SHA-1 will be used.
Hash crypto.Hash
}
func (opts *RequestOptions) hash() crypto.Hash {
if opts == nil || opts.Hash == 0 {
// SHA-1 is nearly universally used in OCSP.
return crypto.SHA1
}
return opts.Hash
}
// CreateRequest returns a DER-encoded, OCSP request for the status of cert. If
// opts is nil then sensible defaults are used.
func CreateRequest(cert, issuer *x509.Certificate, opts *RequestOptions) ([]byte, error) {
hashFunc := opts.hash()
// OCSP seems to be the only place where these raw hash identifiers are
// used. I took the following from
// http://msdn.microsoft.com/en-us/library/ff635603.aspx
_, ok := hashOIDs[hashFunc]
if !ok {
return nil, x509.ErrUnsupportedAlgorithm
}
if !hashFunc.Available() {
return nil, x509.ErrUnsupportedAlgorithm
}
h := opts.hash().New()
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
req := &Request{
HashAlgorithm: hashFunc,
IssuerNameHash: issuerNameHash,
IssuerKeyHash: issuerKeyHash,
SerialNumber: cert.SerialNumber,
}
return req.Marshal()
}
// CreateResponse returns a DER-encoded OCSP response with the specified contents.
// The fields in the response are populated as follows:
//
// The responder cert is used to populate the responder's name field, and the
// certificate itself is provided alongside the OCSP response signature.
//
// The issuer cert is used to puplate the IssuerNameHash and IssuerKeyHash fields.
//
// The template is used to populate the SerialNumber, Status, RevokedAt,
// RevocationReason, ThisUpdate, and NextUpdate fields.
//
// If template.IssuerHash is not set, SHA1 will be used.
//
// The ProducedAt date is automatically set to the current date, to the nearest minute.
func CreateResponse(issuer, responderCert *x509.Certificate, template Response, priv crypto.Signer) ([]byte, error) {
var publicKeyInfo struct {
Algorithm pkix.AlgorithmIdentifier
PublicKey asn1.BitString
}
if _, err := asn1.Unmarshal(issuer.RawSubjectPublicKeyInfo, &publicKeyInfo); err != nil {
return nil, err
}
if template.IssuerHash == 0 {
template.IssuerHash = crypto.SHA1
}
hashOID := getOIDFromHashAlgorithm(template.IssuerHash)
if hashOID == nil {
return nil, errors.New("unsupported issuer hash algorithm")
}
if !template.IssuerHash.Available() {
return nil, fmt.Errorf("issuer hash algorithm %v not linked into binary", template.IssuerHash)
}
h := template.IssuerHash.New()
h.Write(publicKeyInfo.PublicKey.RightAlign())
issuerKeyHash := h.Sum(nil)
h.Reset()
h.Write(issuer.RawSubject)
issuerNameHash := h.Sum(nil)
innerResponse := singleResponse{
CertID: certID{
HashAlgorithm: pkix.AlgorithmIdentifier{
Algorithm: hashOID,
Parameters: asn1.RawValue{Tag: 5 /* ASN.1 NULL */},
},
NameHash: issuerNameHash,
IssuerKeyHash: issuerKeyHash,
SerialNumber: template.SerialNumber,
},
ThisUpdate: template.ThisUpdate.UTC(),
NextUpdate: template.NextUpdate.UTC(),
SingleExtensions: template.ExtraExtensions,
}
switch template.Status {
case Good:
innerResponse.Good = true
case Unknown:
innerResponse.Unknown = true
case Revoked:
innerResponse.Revoked = revokedInfo{
RevocationTime: template.RevokedAt.UTC(),
Reason: asn1.Enumerated(template.RevocationReason),
}
}
rawResponderID := asn1.RawValue{
Class: 2, // context-specific
Tag: 1, // Name (explicit tag)
IsCompound: true,
Bytes: responderCert.RawSubject,
}
tbsResponseData := responseData{
Version: 0,
RawResponderID: rawResponderID,
ProducedAt: time.Now().Truncate(time.Minute).UTC(),
Responses: []singleResponse{innerResponse},
}
tbsResponseDataDER, err := asn1.Marshal(tbsResponseData)
if err != nil {
return nil, err
}
hashFunc, signatureAlgorithm, err := signingParamsForPublicKey(priv.Public(), template.SignatureAlgorithm)
if err != nil {
return nil, err
}
responseHash := hashFunc.New()
responseHash.Write(tbsResponseDataDER)
signature, err := priv.Sign(rand.Reader, responseHash.Sum(nil), hashFunc)
if err != nil {
return nil, err
}
response := basicResponse{
TBSResponseData: tbsResponseData,
SignatureAlgorithm: signatureAlgorithm,
Signature: asn1.BitString{
Bytes: signature,
BitLength: 8 * len(signature),
},
}
if template.Certificate != nil {
response.Certificates = []asn1.RawValue{
{FullBytes: template.Certificate.Raw},
}
}
responseDER, err := asn1.Marshal(response)
if err != nil {
return nil, err
}
return asn1.Marshal(responseASN1{
Status: asn1.Enumerated(Success),
Response: responseBytes{
ResponseType: idPKIXOCSPBasic,
Response: responseDER,
},
})
}