1
0
mirror of https://github.com/Luzifer/cloudkeys-go.git synced 2024-09-19 23:52:57 +00:00
cloudkeys-go/vendor/golang.org/x/crypto/poly1305/sum_ref.go
Knut Ahlers a1df72edc5
Squashed commit of the following:
commit f0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:19:56 2017 +0100

    Mark option as deprecated

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit 9891df2a16
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:11:56 2017 +0100

    Fix: Typo

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit 836006de64
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:04:20 2017 +0100

    Add new dependencies

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit d64fee60c8
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 11:55:52 2017 +0100

    Replace insecure password hashing

    Prior this commit passwords were hashed with a static salt and using the
    SHA1 hashing function. This could lead to passwords being attackable in
    case someone gets access to the raw data stored inside the database.
    This commit introduces password hashing using bcrypt hashing function
    which addresses this issue.

    Old passwords are not automatically re-hashed as they are unknown.
    Replacing the old password scheme is not that easy and needs #10 to be
    solved. Therefore the old hashing scheme is kept for compatibility
    reason.

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

Signed-off-by: Knut Ahlers <knut@ahlers.me>

closes #14
closes #15
2017-12-24 19:44:24 +01:00

142 lines
4.7 KiB
Go

// Copyright 2012 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// +build !amd64,!arm gccgo appengine nacl
package poly1305
import "encoding/binary"
// Sum generates an authenticator for msg using a one-time key and puts the
// 16-byte result into out. Authenticating two different messages with the same
// key allows an attacker to forge messages at will.
func Sum(out *[TagSize]byte, msg []byte, key *[32]byte) {
var (
h0, h1, h2, h3, h4 uint32 // the hash accumulators
r0, r1, r2, r3, r4 uint64 // the r part of the key
)
r0 = uint64(binary.LittleEndian.Uint32(key[0:]) & 0x3ffffff)
r1 = uint64((binary.LittleEndian.Uint32(key[3:]) >> 2) & 0x3ffff03)
r2 = uint64((binary.LittleEndian.Uint32(key[6:]) >> 4) & 0x3ffc0ff)
r3 = uint64((binary.LittleEndian.Uint32(key[9:]) >> 6) & 0x3f03fff)
r4 = uint64((binary.LittleEndian.Uint32(key[12:]) >> 8) & 0x00fffff)
R1, R2, R3, R4 := r1*5, r2*5, r3*5, r4*5
for len(msg) >= TagSize {
// h += msg
h0 += binary.LittleEndian.Uint32(msg[0:]) & 0x3ffffff
h1 += (binary.LittleEndian.Uint32(msg[3:]) >> 2) & 0x3ffffff
h2 += (binary.LittleEndian.Uint32(msg[6:]) >> 4) & 0x3ffffff
h3 += (binary.LittleEndian.Uint32(msg[9:]) >> 6) & 0x3ffffff
h4 += (binary.LittleEndian.Uint32(msg[12:]) >> 8) | (1 << 24)
// h *= r
d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
// h %= p
h0 = uint32(d0) & 0x3ffffff
h1 = uint32(d1) & 0x3ffffff
h2 = uint32(d2) & 0x3ffffff
h3 = uint32(d3) & 0x3ffffff
h4 = uint32(d4) & 0x3ffffff
h0 += uint32(d4>>26) * 5
h1 += h0 >> 26
h0 = h0 & 0x3ffffff
msg = msg[TagSize:]
}
if len(msg) > 0 {
var block [TagSize]byte
off := copy(block[:], msg)
block[off] = 0x01
// h += msg
h0 += binary.LittleEndian.Uint32(block[0:]) & 0x3ffffff
h1 += (binary.LittleEndian.Uint32(block[3:]) >> 2) & 0x3ffffff
h2 += (binary.LittleEndian.Uint32(block[6:]) >> 4) & 0x3ffffff
h3 += (binary.LittleEndian.Uint32(block[9:]) >> 6) & 0x3ffffff
h4 += (binary.LittleEndian.Uint32(block[12:]) >> 8)
// h *= r
d0 := (uint64(h0) * r0) + (uint64(h1) * R4) + (uint64(h2) * R3) + (uint64(h3) * R2) + (uint64(h4) * R1)
d1 := (d0 >> 26) + (uint64(h0) * r1) + (uint64(h1) * r0) + (uint64(h2) * R4) + (uint64(h3) * R3) + (uint64(h4) * R2)
d2 := (d1 >> 26) + (uint64(h0) * r2) + (uint64(h1) * r1) + (uint64(h2) * r0) + (uint64(h3) * R4) + (uint64(h4) * R3)
d3 := (d2 >> 26) + (uint64(h0) * r3) + (uint64(h1) * r2) + (uint64(h2) * r1) + (uint64(h3) * r0) + (uint64(h4) * R4)
d4 := (d3 >> 26) + (uint64(h0) * r4) + (uint64(h1) * r3) + (uint64(h2) * r2) + (uint64(h3) * r1) + (uint64(h4) * r0)
// h %= p
h0 = uint32(d0) & 0x3ffffff
h1 = uint32(d1) & 0x3ffffff
h2 = uint32(d2) & 0x3ffffff
h3 = uint32(d3) & 0x3ffffff
h4 = uint32(d4) & 0x3ffffff
h0 += uint32(d4>>26) * 5
h1 += h0 >> 26
h0 = h0 & 0x3ffffff
}
// h %= p reduction
h2 += h1 >> 26
h1 &= 0x3ffffff
h3 += h2 >> 26
h2 &= 0x3ffffff
h4 += h3 >> 26
h3 &= 0x3ffffff
h0 += 5 * (h4 >> 26)
h4 &= 0x3ffffff
h1 += h0 >> 26
h0 &= 0x3ffffff
// h - p
t0 := h0 + 5
t1 := h1 + (t0 >> 26)
t2 := h2 + (t1 >> 26)
t3 := h3 + (t2 >> 26)
t4 := h4 + (t3 >> 26) - (1 << 26)
t0 &= 0x3ffffff
t1 &= 0x3ffffff
t2 &= 0x3ffffff
t3 &= 0x3ffffff
// select h if h < p else h - p
t_mask := (t4 >> 31) - 1
h_mask := ^t_mask
h0 = (h0 & h_mask) | (t0 & t_mask)
h1 = (h1 & h_mask) | (t1 & t_mask)
h2 = (h2 & h_mask) | (t2 & t_mask)
h3 = (h3 & h_mask) | (t3 & t_mask)
h4 = (h4 & h_mask) | (t4 & t_mask)
// h %= 2^128
h0 |= h1 << 26
h1 = ((h1 >> 6) | (h2 << 20))
h2 = ((h2 >> 12) | (h3 << 14))
h3 = ((h3 >> 18) | (h4 << 8))
// s: the s part of the key
// tag = (h + s) % (2^128)
t := uint64(h0) + uint64(binary.LittleEndian.Uint32(key[16:]))
h0 = uint32(t)
t = uint64(h1) + uint64(binary.LittleEndian.Uint32(key[20:])) + (t >> 32)
h1 = uint32(t)
t = uint64(h2) + uint64(binary.LittleEndian.Uint32(key[24:])) + (t >> 32)
h2 = uint32(t)
t = uint64(h3) + uint64(binary.LittleEndian.Uint32(key[28:])) + (t >> 32)
h3 = uint32(t)
binary.LittleEndian.PutUint32(out[0:], h0)
binary.LittleEndian.PutUint32(out[4:], h1)
binary.LittleEndian.PutUint32(out[8:], h2)
binary.LittleEndian.PutUint32(out[12:], h3)
}