mirror of
https://github.com/Luzifer/cloudkeys-go.git
synced 2024-11-13 00:12:43 +00:00
Knut Ahlers
a1df72edc5
commitf0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:19:56 2017 +0100 Mark option as deprecated Signed-off-by: Knut Ahlers <knut@ahlers.me> commit9891df2a16
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:11:56 2017 +0100 Fix: Typo Signed-off-by: Knut Ahlers <knut@ahlers.me> commit836006de64
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:04:20 2017 +0100 Add new dependencies Signed-off-by: Knut Ahlers <knut@ahlers.me> commitd64fee60c8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 11:55:52 2017 +0100 Replace insecure password hashing Prior this commit passwords were hashed with a static salt and using the SHA1 hashing function. This could lead to passwords being attackable in case someone gets access to the raw data stored inside the database. This commit introduces password hashing using bcrypt hashing function which addresses this issue. Old passwords are not automatically re-hashed as they are unknown. Replacing the old password scheme is not that easy and needs #10 to be solved. Therefore the old hashing scheme is kept for compatibility reason. Signed-off-by: Knut Ahlers <knut@ahlers.me> Signed-off-by: Knut Ahlers <knut@ahlers.me> closes #14 closes #15
177 lines
4 KiB
Go
177 lines
4 KiB
Go
// Copyright 2017 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package blake2b
|
|
|
|
import (
|
|
"encoding/binary"
|
|
"errors"
|
|
"io"
|
|
)
|
|
|
|
// XOF defines the interface to hash functions that
|
|
// support arbitrary-length output.
|
|
type XOF interface {
|
|
// Write absorbs more data into the hash's state. It panics if called
|
|
// after Read.
|
|
io.Writer
|
|
|
|
// Read reads more output from the hash. It returns io.EOF if the limit
|
|
// has been reached.
|
|
io.Reader
|
|
|
|
// Clone returns a copy of the XOF in its current state.
|
|
Clone() XOF
|
|
|
|
// Reset resets the XOF to its initial state.
|
|
Reset()
|
|
}
|
|
|
|
// OutputLengthUnknown can be used as the size argument to NewXOF to indicate
|
|
// the the length of the output is not known in advance.
|
|
const OutputLengthUnknown = 0
|
|
|
|
// magicUnknownOutputLength is a magic value for the output size that indicates
|
|
// an unknown number of output bytes.
|
|
const magicUnknownOutputLength = (1 << 32) - 1
|
|
|
|
// maxOutputLength is the absolute maximum number of bytes to produce when the
|
|
// number of output bytes is unknown.
|
|
const maxOutputLength = (1 << 32) * 64
|
|
|
|
// NewXOF creates a new variable-output-length hash. The hash either produce a
|
|
// known number of bytes (1 <= size < 2**32-1), or an unknown number of bytes
|
|
// (size == OutputLengthUnknown). In the latter case, an absolute limit of
|
|
// 256GiB applies.
|
|
//
|
|
// A non-nil key turns the hash into a MAC. The key must between
|
|
// zero and 32 bytes long.
|
|
func NewXOF(size uint32, key []byte) (XOF, error) {
|
|
if len(key) > Size {
|
|
return nil, errKeySize
|
|
}
|
|
if size == magicUnknownOutputLength {
|
|
// 2^32-1 indicates an unknown number of bytes and thus isn't a
|
|
// valid length.
|
|
return nil, errors.New("blake2b: XOF length too large")
|
|
}
|
|
if size == OutputLengthUnknown {
|
|
size = magicUnknownOutputLength
|
|
}
|
|
x := &xof{
|
|
d: digest{
|
|
size: Size,
|
|
keyLen: len(key),
|
|
},
|
|
length: size,
|
|
}
|
|
copy(x.d.key[:], key)
|
|
x.Reset()
|
|
return x, nil
|
|
}
|
|
|
|
type xof struct {
|
|
d digest
|
|
length uint32
|
|
remaining uint64
|
|
cfg, root, block [Size]byte
|
|
offset int
|
|
nodeOffset uint32
|
|
readMode bool
|
|
}
|
|
|
|
func (x *xof) Write(p []byte) (n int, err error) {
|
|
if x.readMode {
|
|
panic("blake2b: write to XOF after read")
|
|
}
|
|
return x.d.Write(p)
|
|
}
|
|
|
|
func (x *xof) Clone() XOF {
|
|
clone := *x
|
|
return &clone
|
|
}
|
|
|
|
func (x *xof) Reset() {
|
|
x.cfg[0] = byte(Size)
|
|
binary.LittleEndian.PutUint32(x.cfg[4:], uint32(Size)) // leaf length
|
|
binary.LittleEndian.PutUint32(x.cfg[12:], x.length) // XOF length
|
|
x.cfg[17] = byte(Size) // inner hash size
|
|
|
|
x.d.Reset()
|
|
x.d.h[1] ^= uint64(x.length) << 32
|
|
|
|
x.remaining = uint64(x.length)
|
|
if x.remaining == magicUnknownOutputLength {
|
|
x.remaining = maxOutputLength
|
|
}
|
|
x.offset, x.nodeOffset = 0, 0
|
|
x.readMode = false
|
|
}
|
|
|
|
func (x *xof) Read(p []byte) (n int, err error) {
|
|
if !x.readMode {
|
|
x.d.finalize(&x.root)
|
|
x.readMode = true
|
|
}
|
|
|
|
if x.remaining == 0 {
|
|
return 0, io.EOF
|
|
}
|
|
|
|
n = len(p)
|
|
if uint64(n) > x.remaining {
|
|
n = int(x.remaining)
|
|
p = p[:n]
|
|
}
|
|
|
|
if x.offset > 0 {
|
|
blockRemaining := Size - x.offset
|
|
if n < blockRemaining {
|
|
x.offset += copy(p, x.block[x.offset:])
|
|
x.remaining -= uint64(n)
|
|
return
|
|
}
|
|
copy(p, x.block[x.offset:])
|
|
p = p[blockRemaining:]
|
|
x.offset = 0
|
|
x.remaining -= uint64(blockRemaining)
|
|
}
|
|
|
|
for len(p) >= Size {
|
|
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
|
|
x.nodeOffset++
|
|
|
|
x.d.initConfig(&x.cfg)
|
|
x.d.Write(x.root[:])
|
|
x.d.finalize(&x.block)
|
|
|
|
copy(p, x.block[:])
|
|
p = p[Size:]
|
|
x.remaining -= uint64(Size)
|
|
}
|
|
|
|
if todo := len(p); todo > 0 {
|
|
if x.remaining < uint64(Size) {
|
|
x.cfg[0] = byte(x.remaining)
|
|
}
|
|
binary.LittleEndian.PutUint32(x.cfg[8:], x.nodeOffset)
|
|
x.nodeOffset++
|
|
|
|
x.d.initConfig(&x.cfg)
|
|
x.d.Write(x.root[:])
|
|
x.d.finalize(&x.block)
|
|
|
|
x.offset = copy(p, x.block[:todo])
|
|
x.remaining -= uint64(todo)
|
|
}
|
|
return
|
|
}
|
|
|
|
func (d *digest) initConfig(cfg *[Size]byte) {
|
|
d.offset, d.c[0], d.c[1] = 0, 0, 0
|
|
for i := range d.h {
|
|
d.h[i] = iv[i] ^ binary.LittleEndian.Uint64(cfg[i*8:])
|
|
}
|
|
}
|