mirror of
https://github.com/Luzifer/cloudkeys-go.git
synced 2024-11-10 07:00:08 +00:00
Knut Ahlers
a1df72edc5
commitf0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:19:56 2017 +0100 Mark option as deprecated Signed-off-by: Knut Ahlers <knut@ahlers.me> commit9891df2a16
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:11:56 2017 +0100 Fix: Typo Signed-off-by: Knut Ahlers <knut@ahlers.me> commit836006de64
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:04:20 2017 +0100 Add new dependencies Signed-off-by: Knut Ahlers <knut@ahlers.me> commitd64fee60c8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 11:55:52 2017 +0100 Replace insecure password hashing Prior this commit passwords were hashed with a static salt and using the SHA1 hashing function. This could lead to passwords being attackable in case someone gets access to the raw data stored inside the database. This commit introduces password hashing using bcrypt hashing function which addresses this issue. Old passwords are not automatically re-hashed as they are unknown. Replacing the old password scheme is not that easy and needs #10 to be solved. Therefore the old hashing scheme is kept for compatibility reason. Signed-off-by: Knut Ahlers <knut@ahlers.me> Signed-off-by: Knut Ahlers <knut@ahlers.me> closes #14 closes #15
122 lines
3.5 KiB
Go
122 lines
3.5 KiB
Go
// Copyright 2011 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// Package elgamal implements ElGamal encryption, suitable for OpenPGP,
|
|
// as specified in "A Public-Key Cryptosystem and a Signature Scheme Based on
|
|
// Discrete Logarithms," IEEE Transactions on Information Theory, v. IT-31,
|
|
// n. 4, 1985, pp. 469-472.
|
|
//
|
|
// This form of ElGamal embeds PKCS#1 v1.5 padding, which may make it
|
|
// unsuitable for other protocols. RSA should be used in preference in any
|
|
// case.
|
|
package elgamal // import "golang.org/x/crypto/openpgp/elgamal"
|
|
|
|
import (
|
|
"crypto/rand"
|
|
"crypto/subtle"
|
|
"errors"
|
|
"io"
|
|
"math/big"
|
|
)
|
|
|
|
// PublicKey represents an ElGamal public key.
|
|
type PublicKey struct {
|
|
G, P, Y *big.Int
|
|
}
|
|
|
|
// PrivateKey represents an ElGamal private key.
|
|
type PrivateKey struct {
|
|
PublicKey
|
|
X *big.Int
|
|
}
|
|
|
|
// Encrypt encrypts the given message to the given public key. The result is a
|
|
// pair of integers. Errors can result from reading random, or because msg is
|
|
// too large to be encrypted to the public key.
|
|
func Encrypt(random io.Reader, pub *PublicKey, msg []byte) (c1, c2 *big.Int, err error) {
|
|
pLen := (pub.P.BitLen() + 7) / 8
|
|
if len(msg) > pLen-11 {
|
|
err = errors.New("elgamal: message too long")
|
|
return
|
|
}
|
|
|
|
// EM = 0x02 || PS || 0x00 || M
|
|
em := make([]byte, pLen-1)
|
|
em[0] = 2
|
|
ps, mm := em[1:len(em)-len(msg)-1], em[len(em)-len(msg):]
|
|
err = nonZeroRandomBytes(ps, random)
|
|
if err != nil {
|
|
return
|
|
}
|
|
em[len(em)-len(msg)-1] = 0
|
|
copy(mm, msg)
|
|
|
|
m := new(big.Int).SetBytes(em)
|
|
|
|
k, err := rand.Int(random, pub.P)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
c1 = new(big.Int).Exp(pub.G, k, pub.P)
|
|
s := new(big.Int).Exp(pub.Y, k, pub.P)
|
|
c2 = s.Mul(s, m)
|
|
c2.Mod(c2, pub.P)
|
|
|
|
return
|
|
}
|
|
|
|
// Decrypt takes two integers, resulting from an ElGamal encryption, and
|
|
// returns the plaintext of the message. An error can result only if the
|
|
// ciphertext is invalid. Users should keep in mind that this is a padding
|
|
// oracle and thus, if exposed to an adaptive chosen ciphertext attack, can
|
|
// be used to break the cryptosystem. See ``Chosen Ciphertext Attacks
|
|
// Against Protocols Based on the RSA Encryption Standard PKCS #1'', Daniel
|
|
// Bleichenbacher, Advances in Cryptology (Crypto '98),
|
|
func Decrypt(priv *PrivateKey, c1, c2 *big.Int) (msg []byte, err error) {
|
|
s := new(big.Int).Exp(c1, priv.X, priv.P)
|
|
s.ModInverse(s, priv.P)
|
|
s.Mul(s, c2)
|
|
s.Mod(s, priv.P)
|
|
em := s.Bytes()
|
|
|
|
firstByteIsTwo := subtle.ConstantTimeByteEq(em[0], 2)
|
|
|
|
// The remainder of the plaintext must be a string of non-zero random
|
|
// octets, followed by a 0, followed by the message.
|
|
// lookingForIndex: 1 iff we are still looking for the zero.
|
|
// index: the offset of the first zero byte.
|
|
var lookingForIndex, index int
|
|
lookingForIndex = 1
|
|
|
|
for i := 1; i < len(em); i++ {
|
|
equals0 := subtle.ConstantTimeByteEq(em[i], 0)
|
|
index = subtle.ConstantTimeSelect(lookingForIndex&equals0, i, index)
|
|
lookingForIndex = subtle.ConstantTimeSelect(equals0, 0, lookingForIndex)
|
|
}
|
|
|
|
if firstByteIsTwo != 1 || lookingForIndex != 0 || index < 9 {
|
|
return nil, errors.New("elgamal: decryption error")
|
|
}
|
|
return em[index+1:], nil
|
|
}
|
|
|
|
// nonZeroRandomBytes fills the given slice with non-zero random octets.
|
|
func nonZeroRandomBytes(s []byte, rand io.Reader) (err error) {
|
|
_, err = io.ReadFull(rand, s)
|
|
if err != nil {
|
|
return
|
|
}
|
|
|
|
for i := 0; i < len(s); i++ {
|
|
for s[i] == 0 {
|
|
_, err = io.ReadFull(rand, s[i:i+1])
|
|
if err != nil {
|
|
return
|
|
}
|
|
}
|
|
}
|
|
|
|
return
|
|
}
|