1
0
Fork 0
mirror of https://github.com/Luzifer/cloudkeys-go.git synced 2024-11-10 07:00:08 +00:00
cloudkeys-go/vendor/golang.org/x/crypto/curve25519/curve25519.go
Knut Ahlers a1df72edc5
Squashed commit of the following:
commit f0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:19:56 2017 +0100

    Mark option as deprecated

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit 9891df2a16
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:11:56 2017 +0100

    Fix: Typo

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit 836006de64
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 12:04:20 2017 +0100

    Add new dependencies

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

commit d64fee60c8
Author: Knut Ahlers <knut@ahlers.me>
Date:   Sun Dec 24 11:55:52 2017 +0100

    Replace insecure password hashing

    Prior this commit passwords were hashed with a static salt and using the
    SHA1 hashing function. This could lead to passwords being attackable in
    case someone gets access to the raw data stored inside the database.
    This commit introduces password hashing using bcrypt hashing function
    which addresses this issue.

    Old passwords are not automatically re-hashed as they are unknown.
    Replacing the old password scheme is not that easy and needs #10 to be
    solved. Therefore the old hashing scheme is kept for compatibility
    reason.

    Signed-off-by: Knut Ahlers <knut@ahlers.me>

Signed-off-by: Knut Ahlers <knut@ahlers.me>

closes #14
closes #15
2017-12-24 19:44:24 +01:00

834 lines
21 KiB
Go

// Copyright 2013 The Go Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// We have an implementation in amd64 assembly so this code is only run on
// non-amd64 platforms. The amd64 assembly does not support gccgo.
// +build !amd64 gccgo appengine
package curve25519
import (
"encoding/binary"
)
// This code is a port of the public domain, "ref10" implementation of
// curve25519 from SUPERCOP 20130419 by D. J. Bernstein.
// fieldElement represents an element of the field GF(2^255 - 19). An element
// t, entries t[0]...t[9], represents the integer t[0]+2^26 t[1]+2^51 t[2]+2^77
// t[3]+2^102 t[4]+...+2^230 t[9]. Bounds on each t[i] vary depending on
// context.
type fieldElement [10]int32
func feZero(fe *fieldElement) {
for i := range fe {
fe[i] = 0
}
}
func feOne(fe *fieldElement) {
feZero(fe)
fe[0] = 1
}
func feAdd(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] + b[i]
}
}
func feSub(dst, a, b *fieldElement) {
for i := range dst {
dst[i] = a[i] - b[i]
}
}
func feCopy(dst, src *fieldElement) {
for i := range dst {
dst[i] = src[i]
}
}
// feCSwap replaces (f,g) with (g,f) if b == 1; replaces (f,g) with (f,g) if b == 0.
//
// Preconditions: b in {0,1}.
func feCSwap(f, g *fieldElement, b int32) {
b = -b
for i := range f {
t := b & (f[i] ^ g[i])
f[i] ^= t
g[i] ^= t
}
}
// load3 reads a 24-bit, little-endian value from in.
func load3(in []byte) int64 {
var r int64
r = int64(in[0])
r |= int64(in[1]) << 8
r |= int64(in[2]) << 16
return r
}
// load4 reads a 32-bit, little-endian value from in.
func load4(in []byte) int64 {
return int64(binary.LittleEndian.Uint32(in))
}
func feFromBytes(dst *fieldElement, src *[32]byte) {
h0 := load4(src[:])
h1 := load3(src[4:]) << 6
h2 := load3(src[7:]) << 5
h3 := load3(src[10:]) << 3
h4 := load3(src[13:]) << 2
h5 := load4(src[16:])
h6 := load3(src[20:]) << 7
h7 := load3(src[23:]) << 5
h8 := load3(src[26:]) << 4
h9 := load3(src[29:]) << 2
var carry [10]int64
carry[9] = (h9 + 1<<24) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + 1<<24) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + 1<<24) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + 1<<24) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + 1<<24) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + 1<<25) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + 1<<25) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + 1<<25) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + 1<<25) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + 1<<25) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
dst[0] = int32(h0)
dst[1] = int32(h1)
dst[2] = int32(h2)
dst[3] = int32(h3)
dst[4] = int32(h4)
dst[5] = int32(h5)
dst[6] = int32(h6)
dst[7] = int32(h7)
dst[8] = int32(h8)
dst[9] = int32(h9)
}
// feToBytes marshals h to s.
// Preconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Write p=2^255-19; q=floor(h/p).
// Basic claim: q = floor(2^(-255)(h + 19 2^(-25)h9 + 2^(-1))).
//
// Proof:
// Have |h|<=p so |q|<=1 so |19^2 2^(-255) q|<1/4.
// Also have |h-2^230 h9|<2^230 so |19 2^(-255)(h-2^230 h9)|<1/4.
//
// Write y=2^(-1)-19^2 2^(-255)q-19 2^(-255)(h-2^230 h9).
// Then 0<y<1.
//
// Write r=h-pq.
// Have 0<=r<=p-1=2^255-20.
// Thus 0<=r+19(2^-255)r<r+19(2^-255)2^255<=2^255-1.
//
// Write x=r+19(2^-255)r+y.
// Then 0<x<2^255 so floor(2^(-255)x) = 0 so floor(q+2^(-255)x) = q.
//
// Have q+2^(-255)x = 2^(-255)(h + 19 2^(-25) h9 + 2^(-1))
// so floor(2^(-255)(h + 19 2^(-25) h9 + 2^(-1))) = q.
func feToBytes(s *[32]byte, h *fieldElement) {
var carry [10]int32
q := (19*h[9] + (1 << 24)) >> 25
q = (h[0] + q) >> 26
q = (h[1] + q) >> 25
q = (h[2] + q) >> 26
q = (h[3] + q) >> 25
q = (h[4] + q) >> 26
q = (h[5] + q) >> 25
q = (h[6] + q) >> 26
q = (h[7] + q) >> 25
q = (h[8] + q) >> 26
q = (h[9] + q) >> 25
// Goal: Output h-(2^255-19)q, which is between 0 and 2^255-20.
h[0] += 19 * q
// Goal: Output h-2^255 q, which is between 0 and 2^255-20.
carry[0] = h[0] >> 26
h[1] += carry[0]
h[0] -= carry[0] << 26
carry[1] = h[1] >> 25
h[2] += carry[1]
h[1] -= carry[1] << 25
carry[2] = h[2] >> 26
h[3] += carry[2]
h[2] -= carry[2] << 26
carry[3] = h[3] >> 25
h[4] += carry[3]
h[3] -= carry[3] << 25
carry[4] = h[4] >> 26
h[5] += carry[4]
h[4] -= carry[4] << 26
carry[5] = h[5] >> 25
h[6] += carry[5]
h[5] -= carry[5] << 25
carry[6] = h[6] >> 26
h[7] += carry[6]
h[6] -= carry[6] << 26
carry[7] = h[7] >> 25
h[8] += carry[7]
h[7] -= carry[7] << 25
carry[8] = h[8] >> 26
h[9] += carry[8]
h[8] -= carry[8] << 26
carry[9] = h[9] >> 25
h[9] -= carry[9] << 25
// h10 = carry9
// Goal: Output h[0]+...+2^255 h10-2^255 q, which is between 0 and 2^255-20.
// Have h[0]+...+2^230 h[9] between 0 and 2^255-1;
// evidently 2^255 h10-2^255 q = 0.
// Goal: Output h[0]+...+2^230 h[9].
s[0] = byte(h[0] >> 0)
s[1] = byte(h[0] >> 8)
s[2] = byte(h[0] >> 16)
s[3] = byte((h[0] >> 24) | (h[1] << 2))
s[4] = byte(h[1] >> 6)
s[5] = byte(h[1] >> 14)
s[6] = byte((h[1] >> 22) | (h[2] << 3))
s[7] = byte(h[2] >> 5)
s[8] = byte(h[2] >> 13)
s[9] = byte((h[2] >> 21) | (h[3] << 5))
s[10] = byte(h[3] >> 3)
s[11] = byte(h[3] >> 11)
s[12] = byte((h[3] >> 19) | (h[4] << 6))
s[13] = byte(h[4] >> 2)
s[14] = byte(h[4] >> 10)
s[15] = byte(h[4] >> 18)
s[16] = byte(h[5] >> 0)
s[17] = byte(h[5] >> 8)
s[18] = byte(h[5] >> 16)
s[19] = byte((h[5] >> 24) | (h[6] << 1))
s[20] = byte(h[6] >> 7)
s[21] = byte(h[6] >> 15)
s[22] = byte((h[6] >> 23) | (h[7] << 3))
s[23] = byte(h[7] >> 5)
s[24] = byte(h[7] >> 13)
s[25] = byte((h[7] >> 21) | (h[8] << 4))
s[26] = byte(h[8] >> 4)
s[27] = byte(h[8] >> 12)
s[28] = byte((h[8] >> 20) | (h[9] << 6))
s[29] = byte(h[9] >> 2)
s[30] = byte(h[9] >> 10)
s[31] = byte(h[9] >> 18)
}
// feMul calculates h = f * g
// Can overlap h with f or g.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
// |g| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
//
// Notes on implementation strategy:
//
// Using schoolbook multiplication.
// Karatsuba would save a little in some cost models.
//
// Most multiplications by 2 and 19 are 32-bit precomputations;
// cheaper than 64-bit postcomputations.
//
// There is one remaining multiplication by 19 in the carry chain;
// one *19 precomputation can be merged into this,
// but the resulting data flow is considerably less clean.
//
// There are 12 carries below.
// 10 of them are 2-way parallelizable and vectorizable.
// Can get away with 11 carries, but then data flow is much deeper.
//
// With tighter constraints on inputs can squeeze carries into int32.
func feMul(h, f, g *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
g0 := g[0]
g1 := g[1]
g2 := g[2]
g3 := g[3]
g4 := g[4]
g5 := g[5]
g6 := g[6]
g7 := g[7]
g8 := g[8]
g9 := g[9]
g1_19 := 19 * g1 // 1.4*2^29
g2_19 := 19 * g2 // 1.4*2^30; still ok
g3_19 := 19 * g3
g4_19 := 19 * g4
g5_19 := 19 * g5
g6_19 := 19 * g6
g7_19 := 19 * g7
g8_19 := 19 * g8
g9_19 := 19 * g9
f1_2 := 2 * f1
f3_2 := 2 * f3
f5_2 := 2 * f5
f7_2 := 2 * f7
f9_2 := 2 * f9
f0g0 := int64(f0) * int64(g0)
f0g1 := int64(f0) * int64(g1)
f0g2 := int64(f0) * int64(g2)
f0g3 := int64(f0) * int64(g3)
f0g4 := int64(f0) * int64(g4)
f0g5 := int64(f0) * int64(g5)
f0g6 := int64(f0) * int64(g6)
f0g7 := int64(f0) * int64(g7)
f0g8 := int64(f0) * int64(g8)
f0g9 := int64(f0) * int64(g9)
f1g0 := int64(f1) * int64(g0)
f1g1_2 := int64(f1_2) * int64(g1)
f1g2 := int64(f1) * int64(g2)
f1g3_2 := int64(f1_2) * int64(g3)
f1g4 := int64(f1) * int64(g4)
f1g5_2 := int64(f1_2) * int64(g5)
f1g6 := int64(f1) * int64(g6)
f1g7_2 := int64(f1_2) * int64(g7)
f1g8 := int64(f1) * int64(g8)
f1g9_38 := int64(f1_2) * int64(g9_19)
f2g0 := int64(f2) * int64(g0)
f2g1 := int64(f2) * int64(g1)
f2g2 := int64(f2) * int64(g2)
f2g3 := int64(f2) * int64(g3)
f2g4 := int64(f2) * int64(g4)
f2g5 := int64(f2) * int64(g5)
f2g6 := int64(f2) * int64(g6)
f2g7 := int64(f2) * int64(g7)
f2g8_19 := int64(f2) * int64(g8_19)
f2g9_19 := int64(f2) * int64(g9_19)
f3g0 := int64(f3) * int64(g0)
f3g1_2 := int64(f3_2) * int64(g1)
f3g2 := int64(f3) * int64(g2)
f3g3_2 := int64(f3_2) * int64(g3)
f3g4 := int64(f3) * int64(g4)
f3g5_2 := int64(f3_2) * int64(g5)
f3g6 := int64(f3) * int64(g6)
f3g7_38 := int64(f3_2) * int64(g7_19)
f3g8_19 := int64(f3) * int64(g8_19)
f3g9_38 := int64(f3_2) * int64(g9_19)
f4g0 := int64(f4) * int64(g0)
f4g1 := int64(f4) * int64(g1)
f4g2 := int64(f4) * int64(g2)
f4g3 := int64(f4) * int64(g3)
f4g4 := int64(f4) * int64(g4)
f4g5 := int64(f4) * int64(g5)
f4g6_19 := int64(f4) * int64(g6_19)
f4g7_19 := int64(f4) * int64(g7_19)
f4g8_19 := int64(f4) * int64(g8_19)
f4g9_19 := int64(f4) * int64(g9_19)
f5g0 := int64(f5) * int64(g0)
f5g1_2 := int64(f5_2) * int64(g1)
f5g2 := int64(f5) * int64(g2)
f5g3_2 := int64(f5_2) * int64(g3)
f5g4 := int64(f5) * int64(g4)
f5g5_38 := int64(f5_2) * int64(g5_19)
f5g6_19 := int64(f5) * int64(g6_19)
f5g7_38 := int64(f5_2) * int64(g7_19)
f5g8_19 := int64(f5) * int64(g8_19)
f5g9_38 := int64(f5_2) * int64(g9_19)
f6g0 := int64(f6) * int64(g0)
f6g1 := int64(f6) * int64(g1)
f6g2 := int64(f6) * int64(g2)
f6g3 := int64(f6) * int64(g3)
f6g4_19 := int64(f6) * int64(g4_19)
f6g5_19 := int64(f6) * int64(g5_19)
f6g6_19 := int64(f6) * int64(g6_19)
f6g7_19 := int64(f6) * int64(g7_19)
f6g8_19 := int64(f6) * int64(g8_19)
f6g9_19 := int64(f6) * int64(g9_19)
f7g0 := int64(f7) * int64(g0)
f7g1_2 := int64(f7_2) * int64(g1)
f7g2 := int64(f7) * int64(g2)
f7g3_38 := int64(f7_2) * int64(g3_19)
f7g4_19 := int64(f7) * int64(g4_19)
f7g5_38 := int64(f7_2) * int64(g5_19)
f7g6_19 := int64(f7) * int64(g6_19)
f7g7_38 := int64(f7_2) * int64(g7_19)
f7g8_19 := int64(f7) * int64(g8_19)
f7g9_38 := int64(f7_2) * int64(g9_19)
f8g0 := int64(f8) * int64(g0)
f8g1 := int64(f8) * int64(g1)
f8g2_19 := int64(f8) * int64(g2_19)
f8g3_19 := int64(f8) * int64(g3_19)
f8g4_19 := int64(f8) * int64(g4_19)
f8g5_19 := int64(f8) * int64(g5_19)
f8g6_19 := int64(f8) * int64(g6_19)
f8g7_19 := int64(f8) * int64(g7_19)
f8g8_19 := int64(f8) * int64(g8_19)
f8g9_19 := int64(f8) * int64(g9_19)
f9g0 := int64(f9) * int64(g0)
f9g1_38 := int64(f9_2) * int64(g1_19)
f9g2_19 := int64(f9) * int64(g2_19)
f9g3_38 := int64(f9_2) * int64(g3_19)
f9g4_19 := int64(f9) * int64(g4_19)
f9g5_38 := int64(f9_2) * int64(g5_19)
f9g6_19 := int64(f9) * int64(g6_19)
f9g7_38 := int64(f9_2) * int64(g7_19)
f9g8_19 := int64(f9) * int64(g8_19)
f9g9_38 := int64(f9_2) * int64(g9_19)
h0 := f0g0 + f1g9_38 + f2g8_19 + f3g7_38 + f4g6_19 + f5g5_38 + f6g4_19 + f7g3_38 + f8g2_19 + f9g1_38
h1 := f0g1 + f1g0 + f2g9_19 + f3g8_19 + f4g7_19 + f5g6_19 + f6g5_19 + f7g4_19 + f8g3_19 + f9g2_19
h2 := f0g2 + f1g1_2 + f2g0 + f3g9_38 + f4g8_19 + f5g7_38 + f6g6_19 + f7g5_38 + f8g4_19 + f9g3_38
h3 := f0g3 + f1g2 + f2g1 + f3g0 + f4g9_19 + f5g8_19 + f6g7_19 + f7g6_19 + f8g5_19 + f9g4_19
h4 := f0g4 + f1g3_2 + f2g2 + f3g1_2 + f4g0 + f5g9_38 + f6g8_19 + f7g7_38 + f8g6_19 + f9g5_38
h5 := f0g5 + f1g4 + f2g3 + f3g2 + f4g1 + f5g0 + f6g9_19 + f7g8_19 + f8g7_19 + f9g6_19
h6 := f0g6 + f1g5_2 + f2g4 + f3g3_2 + f4g2 + f5g1_2 + f6g0 + f7g9_38 + f8g8_19 + f9g7_38
h7 := f0g7 + f1g6 + f2g5 + f3g4 + f4g3 + f5g2 + f6g1 + f7g0 + f8g9_19 + f9g8_19
h8 := f0g8 + f1g7_2 + f2g6 + f3g5_2 + f4g4 + f5g3_2 + f6g2 + f7g1_2 + f8g0 + f9g9_38
h9 := f0g9 + f1g8 + f2g7 + f3g6 + f4g5 + f5g4 + f6g3 + f7g2 + f8g1 + f9g0
var carry [10]int64
// |h0| <= (1.1*1.1*2^52*(1+19+19+19+19)+1.1*1.1*2^50*(38+38+38+38+38))
// i.e. |h0| <= 1.2*2^59; narrower ranges for h2, h4, h6, h8
// |h1| <= (1.1*1.1*2^51*(1+1+19+19+19+19+19+19+19+19))
// i.e. |h1| <= 1.5*2^58; narrower ranges for h3, h5, h7, h9
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
// |h0| <= 2^25
// |h4| <= 2^25
// |h1| <= 1.51*2^58
// |h5| <= 1.51*2^58
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
// |h1| <= 2^24; from now on fits into int32
// |h5| <= 2^24; from now on fits into int32
// |h2| <= 1.21*2^59
// |h6| <= 1.21*2^59
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
// |h2| <= 2^25; from now on fits into int32 unchanged
// |h6| <= 2^25; from now on fits into int32 unchanged
// |h3| <= 1.51*2^58
// |h7| <= 1.51*2^58
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
// |h3| <= 2^24; from now on fits into int32 unchanged
// |h7| <= 2^24; from now on fits into int32 unchanged
// |h4| <= 1.52*2^33
// |h8| <= 1.52*2^33
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
// |h4| <= 2^25; from now on fits into int32 unchanged
// |h8| <= 2^25; from now on fits into int32 unchanged
// |h5| <= 1.01*2^24
// |h9| <= 1.51*2^58
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
// |h9| <= 2^24; from now on fits into int32 unchanged
// |h0| <= 1.8*2^37
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
// |h0| <= 2^25; from now on fits into int32 unchanged
// |h1| <= 1.01*2^24
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feSquare calculates h = f*f. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feSquare(h, f *fieldElement) {
f0 := f[0]
f1 := f[1]
f2 := f[2]
f3 := f[3]
f4 := f[4]
f5 := f[5]
f6 := f[6]
f7 := f[7]
f8 := f[8]
f9 := f[9]
f0_2 := 2 * f0
f1_2 := 2 * f1
f2_2 := 2 * f2
f3_2 := 2 * f3
f4_2 := 2 * f4
f5_2 := 2 * f5
f6_2 := 2 * f6
f7_2 := 2 * f7
f5_38 := 38 * f5 // 1.31*2^30
f6_19 := 19 * f6 // 1.31*2^30
f7_38 := 38 * f7 // 1.31*2^30
f8_19 := 19 * f8 // 1.31*2^30
f9_38 := 38 * f9 // 1.31*2^30
f0f0 := int64(f0) * int64(f0)
f0f1_2 := int64(f0_2) * int64(f1)
f0f2_2 := int64(f0_2) * int64(f2)
f0f3_2 := int64(f0_2) * int64(f3)
f0f4_2 := int64(f0_2) * int64(f4)
f0f5_2 := int64(f0_2) * int64(f5)
f0f6_2 := int64(f0_2) * int64(f6)
f0f7_2 := int64(f0_2) * int64(f7)
f0f8_2 := int64(f0_2) * int64(f8)
f0f9_2 := int64(f0_2) * int64(f9)
f1f1_2 := int64(f1_2) * int64(f1)
f1f2_2 := int64(f1_2) * int64(f2)
f1f3_4 := int64(f1_2) * int64(f3_2)
f1f4_2 := int64(f1_2) * int64(f4)
f1f5_4 := int64(f1_2) * int64(f5_2)
f1f6_2 := int64(f1_2) * int64(f6)
f1f7_4 := int64(f1_2) * int64(f7_2)
f1f8_2 := int64(f1_2) * int64(f8)
f1f9_76 := int64(f1_2) * int64(f9_38)
f2f2 := int64(f2) * int64(f2)
f2f3_2 := int64(f2_2) * int64(f3)
f2f4_2 := int64(f2_2) * int64(f4)
f2f5_2 := int64(f2_2) * int64(f5)
f2f6_2 := int64(f2_2) * int64(f6)
f2f7_2 := int64(f2_2) * int64(f7)
f2f8_38 := int64(f2_2) * int64(f8_19)
f2f9_38 := int64(f2) * int64(f9_38)
f3f3_2 := int64(f3_2) * int64(f3)
f3f4_2 := int64(f3_2) * int64(f4)
f3f5_4 := int64(f3_2) * int64(f5_2)
f3f6_2 := int64(f3_2) * int64(f6)
f3f7_76 := int64(f3_2) * int64(f7_38)
f3f8_38 := int64(f3_2) * int64(f8_19)
f3f9_76 := int64(f3_2) * int64(f9_38)
f4f4 := int64(f4) * int64(f4)
f4f5_2 := int64(f4_2) * int64(f5)
f4f6_38 := int64(f4_2) * int64(f6_19)
f4f7_38 := int64(f4) * int64(f7_38)
f4f8_38 := int64(f4_2) * int64(f8_19)
f4f9_38 := int64(f4) * int64(f9_38)
f5f5_38 := int64(f5) * int64(f5_38)
f5f6_38 := int64(f5_2) * int64(f6_19)
f5f7_76 := int64(f5_2) * int64(f7_38)
f5f8_38 := int64(f5_2) * int64(f8_19)
f5f9_76 := int64(f5_2) * int64(f9_38)
f6f6_19 := int64(f6) * int64(f6_19)
f6f7_38 := int64(f6) * int64(f7_38)
f6f8_38 := int64(f6_2) * int64(f8_19)
f6f9_38 := int64(f6) * int64(f9_38)
f7f7_38 := int64(f7) * int64(f7_38)
f7f8_38 := int64(f7_2) * int64(f8_19)
f7f9_76 := int64(f7_2) * int64(f9_38)
f8f8_19 := int64(f8) * int64(f8_19)
f8f9_38 := int64(f8) * int64(f9_38)
f9f9_38 := int64(f9) * int64(f9_38)
h0 := f0f0 + f1f9_76 + f2f8_38 + f3f7_76 + f4f6_38 + f5f5_38
h1 := f0f1_2 + f2f9_38 + f3f8_38 + f4f7_38 + f5f6_38
h2 := f0f2_2 + f1f1_2 + f3f9_76 + f4f8_38 + f5f7_76 + f6f6_19
h3 := f0f3_2 + f1f2_2 + f4f9_38 + f5f8_38 + f6f7_38
h4 := f0f4_2 + f1f3_4 + f2f2 + f5f9_76 + f6f8_38 + f7f7_38
h5 := f0f5_2 + f1f4_2 + f2f3_2 + f6f9_38 + f7f8_38
h6 := f0f6_2 + f1f5_4 + f2f4_2 + f3f3_2 + f7f9_76 + f8f8_19
h7 := f0f7_2 + f1f6_2 + f2f5_2 + f3f4_2 + f8f9_38
h8 := f0f8_2 + f1f7_4 + f2f6_2 + f3f5_4 + f4f4 + f9f9_38
h9 := f0f9_2 + f1f8_2 + f2f7_2 + f3f6_2 + f4f5_2
var carry [10]int64
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feMul121666 calculates h = f * 121666. Can overlap h with f.
//
// Preconditions:
// |f| bounded by 1.1*2^26,1.1*2^25,1.1*2^26,1.1*2^25,etc.
//
// Postconditions:
// |h| bounded by 1.1*2^25,1.1*2^24,1.1*2^25,1.1*2^24,etc.
func feMul121666(h, f *fieldElement) {
h0 := int64(f[0]) * 121666
h1 := int64(f[1]) * 121666
h2 := int64(f[2]) * 121666
h3 := int64(f[3]) * 121666
h4 := int64(f[4]) * 121666
h5 := int64(f[5]) * 121666
h6 := int64(f[6]) * 121666
h7 := int64(f[7]) * 121666
h8 := int64(f[8]) * 121666
h9 := int64(f[9]) * 121666
var carry [10]int64
carry[9] = (h9 + (1 << 24)) >> 25
h0 += carry[9] * 19
h9 -= carry[9] << 25
carry[1] = (h1 + (1 << 24)) >> 25
h2 += carry[1]
h1 -= carry[1] << 25
carry[3] = (h3 + (1 << 24)) >> 25
h4 += carry[3]
h3 -= carry[3] << 25
carry[5] = (h5 + (1 << 24)) >> 25
h6 += carry[5]
h5 -= carry[5] << 25
carry[7] = (h7 + (1 << 24)) >> 25
h8 += carry[7]
h7 -= carry[7] << 25
carry[0] = (h0 + (1 << 25)) >> 26
h1 += carry[0]
h0 -= carry[0] << 26
carry[2] = (h2 + (1 << 25)) >> 26
h3 += carry[2]
h2 -= carry[2] << 26
carry[4] = (h4 + (1 << 25)) >> 26
h5 += carry[4]
h4 -= carry[4] << 26
carry[6] = (h6 + (1 << 25)) >> 26
h7 += carry[6]
h6 -= carry[6] << 26
carry[8] = (h8 + (1 << 25)) >> 26
h9 += carry[8]
h8 -= carry[8] << 26
h[0] = int32(h0)
h[1] = int32(h1)
h[2] = int32(h2)
h[3] = int32(h3)
h[4] = int32(h4)
h[5] = int32(h5)
h[6] = int32(h6)
h[7] = int32(h7)
h[8] = int32(h8)
h[9] = int32(h9)
}
// feInvert sets out = z^-1.
func feInvert(out, z *fieldElement) {
var t0, t1, t2, t3 fieldElement
var i int
feSquare(&t0, z)
for i = 1; i < 1; i++ {
feSquare(&t0, &t0)
}
feSquare(&t1, &t0)
for i = 1; i < 2; i++ {
feSquare(&t1, &t1)
}
feMul(&t1, z, &t1)
feMul(&t0, &t0, &t1)
feSquare(&t2, &t0)
for i = 1; i < 1; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t1, &t2)
feSquare(&t2, &t1)
for i = 1; i < 5; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 20; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 10; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t2, &t1)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t2, &t2, &t1)
feSquare(&t3, &t2)
for i = 1; i < 100; i++ {
feSquare(&t3, &t3)
}
feMul(&t2, &t3, &t2)
feSquare(&t2, &t2)
for i = 1; i < 50; i++ {
feSquare(&t2, &t2)
}
feMul(&t1, &t2, &t1)
feSquare(&t1, &t1)
for i = 1; i < 5; i++ {
feSquare(&t1, &t1)
}
feMul(out, &t1, &t0)
}
func scalarMult(out, in, base *[32]byte) {
var e [32]byte
copy(e[:], in[:])
e[0] &= 248
e[31] &= 127
e[31] |= 64
var x1, x2, z2, x3, z3, tmp0, tmp1 fieldElement
feFromBytes(&x1, base)
feOne(&x2)
feCopy(&x3, &x1)
feOne(&z3)
swap := int32(0)
for pos := 254; pos >= 0; pos-- {
b := e[pos/8] >> uint(pos&7)
b &= 1
swap ^= int32(b)
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
swap = int32(b)
feSub(&tmp0, &x3, &z3)
feSub(&tmp1, &x2, &z2)
feAdd(&x2, &x2, &z2)
feAdd(&z2, &x3, &z3)
feMul(&z3, &tmp0, &x2)
feMul(&z2, &z2, &tmp1)
feSquare(&tmp0, &tmp1)
feSquare(&tmp1, &x2)
feAdd(&x3, &z3, &z2)
feSub(&z2, &z3, &z2)
feMul(&x2, &tmp1, &tmp0)
feSub(&tmp1, &tmp1, &tmp0)
feSquare(&z2, &z2)
feMul121666(&z3, &tmp1)
feSquare(&x3, &x3)
feAdd(&tmp0, &tmp0, &z3)
feMul(&z3, &x1, &z2)
feMul(&z2, &tmp1, &tmp0)
}
feCSwap(&x2, &x3, swap)
feCSwap(&z2, &z3, swap)
feInvert(&z2, &z2)
feMul(&x2, &x2, &z2)
feToBytes(out, &x2)
}