mirror of
https://github.com/Luzifer/cloudkeys-go.git
synced 2024-11-14 17:02:43 +00:00
Knut Ahlers
a1df72edc5
commitf0db1ff1f8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:19:56 2017 +0100 Mark option as deprecated Signed-off-by: Knut Ahlers <knut@ahlers.me> commit9891df2a16
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:11:56 2017 +0100 Fix: Typo Signed-off-by: Knut Ahlers <knut@ahlers.me> commit836006de64
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 12:04:20 2017 +0100 Add new dependencies Signed-off-by: Knut Ahlers <knut@ahlers.me> commitd64fee60c8
Author: Knut Ahlers <knut@ahlers.me> Date: Sun Dec 24 11:55:52 2017 +0100 Replace insecure password hashing Prior this commit passwords were hashed with a static salt and using the SHA1 hashing function. This could lead to passwords being attackable in case someone gets access to the raw data stored inside the database. This commit introduces password hashing using bcrypt hashing function which addresses this issue. Old passwords are not automatically re-hashed as they are unknown. Replacing the old password scheme is not that easy and needs #10 to be solved. Therefore the old hashing scheme is kept for compatibility reason. Signed-off-by: Knut Ahlers <knut@ahlers.me> Signed-off-by: Knut Ahlers <knut@ahlers.me> closes #14 closes #15
240 lines
5.1 KiB
Go
240 lines
5.1 KiB
Go
// Copyright 2012 The Go Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
// +build amd64,!gccgo,!appengine
|
|
|
|
package curve25519
|
|
|
|
// These functions are implemented in the .s files. The names of the functions
|
|
// in the rest of the file are also taken from the SUPERCOP sources to help
|
|
// people following along.
|
|
|
|
//go:noescape
|
|
|
|
func cswap(inout *[5]uint64, v uint64)
|
|
|
|
//go:noescape
|
|
|
|
func ladderstep(inout *[5][5]uint64)
|
|
|
|
//go:noescape
|
|
|
|
func freeze(inout *[5]uint64)
|
|
|
|
//go:noescape
|
|
|
|
func mul(dest, a, b *[5]uint64)
|
|
|
|
//go:noescape
|
|
|
|
func square(out, in *[5]uint64)
|
|
|
|
// mladder uses a Montgomery ladder to calculate (xr/zr) *= s.
|
|
func mladder(xr, zr *[5]uint64, s *[32]byte) {
|
|
var work [5][5]uint64
|
|
|
|
work[0] = *xr
|
|
setint(&work[1], 1)
|
|
setint(&work[2], 0)
|
|
work[3] = *xr
|
|
setint(&work[4], 1)
|
|
|
|
j := uint(6)
|
|
var prevbit byte
|
|
|
|
for i := 31; i >= 0; i-- {
|
|
for j < 8 {
|
|
bit := ((*s)[i] >> j) & 1
|
|
swap := bit ^ prevbit
|
|
prevbit = bit
|
|
cswap(&work[1], uint64(swap))
|
|
ladderstep(&work)
|
|
j--
|
|
}
|
|
j = 7
|
|
}
|
|
|
|
*xr = work[1]
|
|
*zr = work[2]
|
|
}
|
|
|
|
func scalarMult(out, in, base *[32]byte) {
|
|
var e [32]byte
|
|
copy(e[:], (*in)[:])
|
|
e[0] &= 248
|
|
e[31] &= 127
|
|
e[31] |= 64
|
|
|
|
var t, z [5]uint64
|
|
unpack(&t, base)
|
|
mladder(&t, &z, &e)
|
|
invert(&z, &z)
|
|
mul(&t, &t, &z)
|
|
pack(out, &t)
|
|
}
|
|
|
|
func setint(r *[5]uint64, v uint64) {
|
|
r[0] = v
|
|
r[1] = 0
|
|
r[2] = 0
|
|
r[3] = 0
|
|
r[4] = 0
|
|
}
|
|
|
|
// unpack sets r = x where r consists of 5, 51-bit limbs in little-endian
|
|
// order.
|
|
func unpack(r *[5]uint64, x *[32]byte) {
|
|
r[0] = uint64(x[0]) |
|
|
uint64(x[1])<<8 |
|
|
uint64(x[2])<<16 |
|
|
uint64(x[3])<<24 |
|
|
uint64(x[4])<<32 |
|
|
uint64(x[5])<<40 |
|
|
uint64(x[6]&7)<<48
|
|
|
|
r[1] = uint64(x[6])>>3 |
|
|
uint64(x[7])<<5 |
|
|
uint64(x[8])<<13 |
|
|
uint64(x[9])<<21 |
|
|
uint64(x[10])<<29 |
|
|
uint64(x[11])<<37 |
|
|
uint64(x[12]&63)<<45
|
|
|
|
r[2] = uint64(x[12])>>6 |
|
|
uint64(x[13])<<2 |
|
|
uint64(x[14])<<10 |
|
|
uint64(x[15])<<18 |
|
|
uint64(x[16])<<26 |
|
|
uint64(x[17])<<34 |
|
|
uint64(x[18])<<42 |
|
|
uint64(x[19]&1)<<50
|
|
|
|
r[3] = uint64(x[19])>>1 |
|
|
uint64(x[20])<<7 |
|
|
uint64(x[21])<<15 |
|
|
uint64(x[22])<<23 |
|
|
uint64(x[23])<<31 |
|
|
uint64(x[24])<<39 |
|
|
uint64(x[25]&15)<<47
|
|
|
|
r[4] = uint64(x[25])>>4 |
|
|
uint64(x[26])<<4 |
|
|
uint64(x[27])<<12 |
|
|
uint64(x[28])<<20 |
|
|
uint64(x[29])<<28 |
|
|
uint64(x[30])<<36 |
|
|
uint64(x[31]&127)<<44
|
|
}
|
|
|
|
// pack sets out = x where out is the usual, little-endian form of the 5,
|
|
// 51-bit limbs in x.
|
|
func pack(out *[32]byte, x *[5]uint64) {
|
|
t := *x
|
|
freeze(&t)
|
|
|
|
out[0] = byte(t[0])
|
|
out[1] = byte(t[0] >> 8)
|
|
out[2] = byte(t[0] >> 16)
|
|
out[3] = byte(t[0] >> 24)
|
|
out[4] = byte(t[0] >> 32)
|
|
out[5] = byte(t[0] >> 40)
|
|
out[6] = byte(t[0] >> 48)
|
|
|
|
out[6] ^= byte(t[1]<<3) & 0xf8
|
|
out[7] = byte(t[1] >> 5)
|
|
out[8] = byte(t[1] >> 13)
|
|
out[9] = byte(t[1] >> 21)
|
|
out[10] = byte(t[1] >> 29)
|
|
out[11] = byte(t[1] >> 37)
|
|
out[12] = byte(t[1] >> 45)
|
|
|
|
out[12] ^= byte(t[2]<<6) & 0xc0
|
|
out[13] = byte(t[2] >> 2)
|
|
out[14] = byte(t[2] >> 10)
|
|
out[15] = byte(t[2] >> 18)
|
|
out[16] = byte(t[2] >> 26)
|
|
out[17] = byte(t[2] >> 34)
|
|
out[18] = byte(t[2] >> 42)
|
|
out[19] = byte(t[2] >> 50)
|
|
|
|
out[19] ^= byte(t[3]<<1) & 0xfe
|
|
out[20] = byte(t[3] >> 7)
|
|
out[21] = byte(t[3] >> 15)
|
|
out[22] = byte(t[3] >> 23)
|
|
out[23] = byte(t[3] >> 31)
|
|
out[24] = byte(t[3] >> 39)
|
|
out[25] = byte(t[3] >> 47)
|
|
|
|
out[25] ^= byte(t[4]<<4) & 0xf0
|
|
out[26] = byte(t[4] >> 4)
|
|
out[27] = byte(t[4] >> 12)
|
|
out[28] = byte(t[4] >> 20)
|
|
out[29] = byte(t[4] >> 28)
|
|
out[30] = byte(t[4] >> 36)
|
|
out[31] = byte(t[4] >> 44)
|
|
}
|
|
|
|
// invert calculates r = x^-1 mod p using Fermat's little theorem.
|
|
func invert(r *[5]uint64, x *[5]uint64) {
|
|
var z2, z9, z11, z2_5_0, z2_10_0, z2_20_0, z2_50_0, z2_100_0, t [5]uint64
|
|
|
|
square(&z2, x) /* 2 */
|
|
square(&t, &z2) /* 4 */
|
|
square(&t, &t) /* 8 */
|
|
mul(&z9, &t, x) /* 9 */
|
|
mul(&z11, &z9, &z2) /* 11 */
|
|
square(&t, &z11) /* 22 */
|
|
mul(&z2_5_0, &t, &z9) /* 2^5 - 2^0 = 31 */
|
|
|
|
square(&t, &z2_5_0) /* 2^6 - 2^1 */
|
|
for i := 1; i < 5; i++ { /* 2^20 - 2^10 */
|
|
square(&t, &t)
|
|
}
|
|
mul(&z2_10_0, &t, &z2_5_0) /* 2^10 - 2^0 */
|
|
|
|
square(&t, &z2_10_0) /* 2^11 - 2^1 */
|
|
for i := 1; i < 10; i++ { /* 2^20 - 2^10 */
|
|
square(&t, &t)
|
|
}
|
|
mul(&z2_20_0, &t, &z2_10_0) /* 2^20 - 2^0 */
|
|
|
|
square(&t, &z2_20_0) /* 2^21 - 2^1 */
|
|
for i := 1; i < 20; i++ { /* 2^40 - 2^20 */
|
|
square(&t, &t)
|
|
}
|
|
mul(&t, &t, &z2_20_0) /* 2^40 - 2^0 */
|
|
|
|
square(&t, &t) /* 2^41 - 2^1 */
|
|
for i := 1; i < 10; i++ { /* 2^50 - 2^10 */
|
|
square(&t, &t)
|
|
}
|
|
mul(&z2_50_0, &t, &z2_10_0) /* 2^50 - 2^0 */
|
|
|
|
square(&t, &z2_50_0) /* 2^51 - 2^1 */
|
|
for i := 1; i < 50; i++ { /* 2^100 - 2^50 */
|
|
square(&t, &t)
|
|
}
|
|
mul(&z2_100_0, &t, &z2_50_0) /* 2^100 - 2^0 */
|
|
|
|
square(&t, &z2_100_0) /* 2^101 - 2^1 */
|
|
for i := 1; i < 100; i++ { /* 2^200 - 2^100 */
|
|
square(&t, &t)
|
|
}
|
|
mul(&t, &t, &z2_100_0) /* 2^200 - 2^0 */
|
|
|
|
square(&t, &t) /* 2^201 - 2^1 */
|
|
for i := 1; i < 50; i++ { /* 2^250 - 2^50 */
|
|
square(&t, &t)
|
|
}
|
|
mul(&t, &t, &z2_50_0) /* 2^250 - 2^0 */
|
|
|
|
square(&t, &t) /* 2^251 - 2^1 */
|
|
square(&t, &t) /* 2^252 - 2^2 */
|
|
square(&t, &t) /* 2^253 - 2^3 */
|
|
|
|
square(&t, &t) /* 2^254 - 2^4 */
|
|
|
|
square(&t, &t) /* 2^255 - 2^5 */
|
|
mul(r, &t, &z11) /* 2^255 - 21 */
|
|
}
|